[发明专利]基于深度学习的小幅度目标三维姿态角测量方法有效

专利信息
申请号: 201711280980.5 申请日: 2017-12-06
公开(公告)号: CN107917700B 公开(公告)日: 2020-06-09
发明(设计)人: 杨嘉琛;满家宝 申请(专利权)人: 天津大学
主分类号: G01C11/02 分类号: G01C11/02;G01C11/04
代理公司: 天津市北洋有限责任专利代理事务所 12201 代理人: 程毓英
地址: 300072*** 国省代码: 天津;12
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明涉及一种基于深度学习的小幅度目标三维姿态角测量方法,包括:根据实际工程需要,按1:1比例制作符合实际环境的被测目标物模型,并在目标物表面适当位置贴放标识;制成视觉测量装置,并完成相机标定与畸变校正;放置已贴放标识的被测目标物模型,位置应满足标识轴心与视觉测量装置轴心连线保持水平;借助角度测量装置,调整目标三维姿态角,对标识进图片拍摄;以确定间隔为步幅进行训练样本获取,每个样本对应一个标签,分别对应一组三维姿态角;进行训练网络的搭建工作;训练卷积神经网络。
搜索关键词: 基于 深度 学习 幅度 目标 三维 姿态 测量方法
【主权项】:
一种基于深度学习的小幅度目标三维姿态角测量方法,包括如下的步骤:1)根据实际工程需要,按1:1比例制作符合实际环境的被测目标物模型,并在目标物表面适当位置贴放标识;2)通过挑选满足工程需要的相机镜头与图像传感器,联合制成视觉测量装置,并完成相机标定与畸变校正;3)校正后的视觉测量装置确定后,放置已贴放标识的被测目标物模型,位置应满足标识轴心与视觉测量装置轴心连线保持水平;4)借助角度测量装置,调整目标三维姿态角,对标识进图片拍摄;5)以确定间隔为步幅进行训练样本获取,每个样本对应一个标签,分别对应一组三维姿态角,将收集好的训练集进行格式转换,使之符合神经网络输入层的数据格式;6)进行训练网络的搭建工作,训练网络基于VGG‑16卷积神经网络,并在此基础上进行改进,使用VGG16的前5层,将FC6,FC7替换为卷积层,并将多尺度特征图同时输出;7)训练卷积神经网络;8)构建测试用数据集,任意调整被测目标物模型三维姿态角进行拍照截取,投入训练好的卷积神经网络,得到测试结果。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于天津大学,未经天津大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201711280980.5/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top