[发明专利]网络文本与图像中关联语义基元的弱监督学习方法有效

专利信息
申请号: 201711248543.5 申请日: 2017-12-01
公开(公告)号: CN108132968B 公开(公告)日: 2020-08-04
发明(设计)人: 杜友田;黄鑫;崔云博;王航 申请(专利权)人: 西安交通大学
主分类号: G06F16/583 分类号: G06F16/583;G06F16/33;G06F16/901;G06F40/30
代理公司: 西安智大知识产权代理事务所 61215 代理人: 段俊涛
地址: 710049 陕*** 国省代码: 陕西;61
权利要求书: 查看更多 说明书: 查看更多
摘要: 一种网络文本与图像中关联语义基元的弱监督学习方法,首先,针对异构模态数据内容进行特征提取与表达,从而分别获得文本、图像两者单独模态下语义基元的特征向量空间;其次,以图像中的每个区域作为结点,以结点之间的多种关系作为边,构建图像‑文本语义信息传播模型;再次,构建图上的学习算法,将图像级别对应的文本语义信息有效地传播到这些图像区域上去,形成大量表征客观世界的语义基本单元集合;本发明针对目前网络中数量居多的文本、图像两种模态的数据进行相关性建模和学习,通过基于图的文本图像关联语义基元学习算法,获得大量在高层语义相匹配的文本‑图像语义基元对,从高层语义上将二者实现关联,在跨媒体检索等领域价值巨大。
搜索关键词: 网络 文本 图像 关联 语义 监督 学习方法
【主权项】:
网络文本与图像中关联语义基元的弱监督学习方法,其特征在于,包括如下步骤:步骤1,针对异构模态数据内容进行特征提取与表达,从而分别获得文本、图像两者单独模态下语义基元的特征向量空间;步骤2,以图像中的每个区域作为结点,以结点之间的多种关系作为边,构建图像‑文本语义信息传播模型;步骤3,构建图上的学习算法,将图像级别对应的文本语义信息有效地传播到这些图像区域上去,形成大量表征客观世界的语义基本单元集合。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于西安交通大学,未经西安交通大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201711248543.5/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top