[发明专利]CPU-GPU异构环境中对GPU应用的性能评估方法及系统有效

专利信息
申请号: 201711146155.6 申请日: 2017-11-17
公开(公告)号: CN107908536B 公开(公告)日: 2020-05-19
发明(设计)人: 廖小飞;郑然;胡清月;金海 申请(专利权)人: 华中科技大学
主分类号: G06F11/34 分类号: G06F11/34
代理公司: 华中科技大学专利中心 42201 代理人: 李智;曹葆青
地址: 430074 湖北*** 国省代码: 湖北;42
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明公开了一种CPU‑GPU异构环境中对GPU应用的性能评估方法及系统,属于GPU性能评估领域。方法具体为:基于机器学习中的决策树算法,对GPU架构上运行的各类应用的执行情况学习,建立决策树模型;在决策树匹配过程中依次获得对应用执行时间影响最大的监控特征,即对特征的重要度排序;依次将筛选出的特征集与四类应用常见的问题对应,主要是指计算相关、内存相关、占用率相关、同步相关四大常见问题,由此初步得到待分析应用的性能瓶颈所在的问题方向。本发明通过结合决策树模型和分析建模的方法,提供了一种通用的、相对准确的、快速的、简单易用的对GPU上的资源和应用进行性能评估的方法。
搜索关键词: cpu gpu 环境 应用 性能 评估 方法 系统
【主权项】:
CPU‑GPU异构环境中对GPU应用的性能评估方法,其特征在于,包括离线决策树构建部分和在线性能评估部分:所述离线决策树构建部分包括以下步骤:(S1)提取不同GPU应用在运行过程中的多条样本监控记录组成样本监控数据集,每条样本监控记录包含多个表征GPU应用运行状态的特征;(S2)从样本监控数据集中筛选出对GPU性能影响最大的特征,将其作为根节点;按照根节点取值大小将样本监控数据集划分为多个子集,从每一子集中分别筛选出对GPU性能影响次大的特征,将其作为第一层子节点;按照上述相同的方式筛选出余下层次的子节点,从而构建按照对GPU性能影响大小对特征排序的决策树;所述在线性能评估部分包括以下步骤:(T1)从待分析GPU应用的运行过程中提取待分析监控记录;(T2)将待分析监控记录与所述离线构建的决策树进行匹配,得到对GPU性能影响的特征排序组合;(T3)根据步骤(T2)得到的特征排序组合,在特征排序组合与GPU性能关注点的映射关系进行查询,得到待分析监控记录对应的GPU性能关注点。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于华中科技大学,未经华中科技大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201711146155.6/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top