[发明专利]一种基于WGAN模型的可变形卷积核方法在审

专利信息
申请号: 201711123711.8 申请日: 2017-11-14
公开(公告)号: CN107886162A 公开(公告)日: 2018-04-06
发明(设计)人: 周智恒;李立军;胥静;朱湘军;李利苹;汪壮雄 申请(专利权)人: 华南理工大学;广州视声智能股份有限公司;广州视声智能科技有限公司
主分类号: G06N3/04 分类号: G06N3/04;G06N3/08
代理公司: 广州市华学知识产权代理有限公司44245 代理人: 李斌
地址: 511458 广东省广州市*** 国省代码: 广东;44
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明公开了一种基于WGAN模型的可变形卷积核方法,属于深度学习神经网络领域,包括以下步骤S1、构造原始生成对抗网络模型;S2、构造沃瑟斯坦距离,作为对抗网络模型的评判指标;S3、初始化随机噪声,输入生成器中;S4、在WGAN模型中利用可变形卷积核对图像进行卷积;S5、将可变形卷积操作得到的损失函数输入生成器进行后续训练。本发明构建的基于WGAN模型的可变形卷积核方法,改变了判别器、生成器接收图片后的卷积方式,让判别器、生成器能够根据训练的情况自动地改变卷积核的大小,从而能够自适应地对数据集图像的特征进行学习,提高了整个网络训练的鲁棒性。
搜索关键词: 一种 基于 wgan 模型 变形 卷积 方法
【主权项】:
一种基于WGAN模型的可变形卷积核方法,其特征在于,所述的可变形卷积核方法包括下列步骤:S1、构造原始生成对抗网络模型,通过生成器生成图像输入至判别器进行网络训练;S2、构造沃瑟斯坦距离,作为对抗网络模型的评判指标;S3、初始化随机噪声,输入生成器中;S4、在WGAN模型中利用可变形卷积核对图像进行卷积;S5、将可变形卷积操作得到的损失函数输入生成器进行后续训练。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于华南理工大学;广州视声智能股份有限公司;广州视声智能科技有限公司,未经华南理工大学;广州视声智能股份有限公司;广州视声智能科技有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201711123711.8/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top