[发明专利]基于SVM的故障检测模型构建及评估方法有效

专利信息
申请号: 201710866517.2 申请日: 2017-09-22
公开(公告)号: CN107634857B 公开(公告)日: 2020-09-08
发明(设计)人: 张佩云 申请(专利权)人: 安徽师范大学
主分类号: H04L12/24 分类号: H04L12/24;G06K9/62
代理公司: 芜湖安汇知识产权代理有限公司 34107 代理人: 张巧婵
地址: 241000 安徽省*** 国省代码: 安徽;34
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明适用于云技术领域,提供了一种基于SVM的故障模型构建及评估方法,该方法包括如下步骤:选择径向基核函数RBF构造支持向量机SVM云故障预测模型;基于给定的云样本训练集对支持向量机SVM进行训练,所述训练过程具体如下:基于支持向量机SVM将云故障预测转化为具有约束条件的二次规划;基于二次规划的解构建决策函数,所述决策函数即为超平面;基于超平面对测试样本点进行故障评估。SVM模型相对于BP模型,LVQ模型而言,可以寻找到全局最优解,能避免维数灾难,同时收敛速度较快提高,此外,本发明实施例选择径向基核函数RBF构造支持向量机SVM云故障预测模型,因而在满足精确度的同时,可以降低模型构建的复杂度,提高故障分析效率。
搜索关键词: 基于 svm 故障 检测 模型 构建 评估 方法
【主权项】:
一种基于SVM的故障模型构建及评估方法,其特征在于,所述方法包括如下步骤:S1、选择径向基核函数RBF构造支持向量机SVM云故障预测模型;S2、基于给定的云样本训练集对支持向量机SVM进行训练,所述训练过程具体如下:基于支持向量机SVM将云故障预测转化为具有约束条件的二次规划;基于二次规划的解构建决策函数,所述决策函数即为超平面;S3、基于超平面对测试样本点进行故障评估。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于安徽师范大学,未经安徽师范大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201710866517.2/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top