[发明专利]一种基于贝叶斯统计学习的医学古汉语句子切分方法有效
申请号: | 201710800571.7 | 申请日: | 2017-09-07 |
公开(公告)号: | CN107491439B | 公开(公告)日: | 2020-05-19 |
发明(设计)人: | 王亚强;刘胤;唐聃;舒红平 | 申请(专利权)人: | 成都信息工程大学 |
主分类号: | G06F40/211 | 分类号: | G06F40/211;G06F40/284;G06F40/289;G06F16/35 |
代理公司: | 北京众合诚成知识产权代理有限公司 11246 | 代理人: | 夏艳 |
地址: | 610225 四川省成都*** | 国省代码: | 四川;51 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明属于语言处理领域,公开了一种基于贝叶斯统计学习的医学古汉语句子切分方法,在所述的基于贝叶斯统计学习的医学古汉语句子切分方法对句子识别的朴素贝叶斯方法的基础之上,对于特征属性再添加二元组与三元组或者进行一元组、二元组、三元组多样特征属性组合得到多组实验数据结果,最后得出最佳模型;进而实现医学古汉语句子切分任务。本发明与实际处理文本内容相结合,通过本实验方法将现有技术各项特征的F值可提高至少25个百分点,本发明中系统地分析与归纳了医学古汉语文本句子识别规则,实现了可以应用于实际中医医学领域的处理方法,建立了医学古汉语文本的句子识别语料库,进一步让科研成果发挥出更大的作用。 | ||
搜索关键词: | 一种 基于 贝叶斯 统计 学习 医学 古汉语 句子 切分 方法 | ||
【主权项】:
一种基于贝叶斯统计学习的医学古汉语句子切分方法,其特征在于,在所述的基于贝叶斯统计学习的医学古汉语句子切分方法对句子识别的朴素贝叶斯方法的基础上,对于该方法所需的特征属性项再添加二元组与三元组的为特征属性或者进行一元组、二元组、三元组多样特征属性组合得到多组实验数据结果,最后得出最佳模型;进而完成医学古汉语句子切分任务。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于成都信息工程大学,未经成都信息工程大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201710800571.7/,转载请声明来源钻瓜专利网。