[发明专利]机器人作业轨迹优化分析的方法有效
申请号: | 201710757867.5 | 申请日: | 2017-08-29 |
公开(公告)号: | CN107511823B | 公开(公告)日: | 2019-09-27 |
发明(设计)人: | 段棠少;李太福;姚立忠 | 申请(专利权)人: | 重庆科技学院 |
主分类号: | B25J9/16 | 分类号: | B25J9/16 |
代理公司: | 重庆蕴博君晟知识产权代理事务所(普通合伙) 50223 | 代理人: | 郑勇 |
地址: | 401331 重*** | 国省代码: | 重庆;50 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开了一种基于工业机器人日常运行大数据的机器人作业轨迹优化分析的方法。包括:采集工业机器人作业轨迹参数构成影响因素矩阵X,其中决策变量为机器人各关节的速度和加速度;S2:采用影响因素矩阵X作为输入参数,综合产品生产要求和专家经验,确定加工工件的质量、效率、能耗的样本为指标矩阵Y,利用BP神经网络进行训练、检验,建立机器人轨迹规划模型;S3:对机器人作业轨迹模型进行优化,得到各决策变量的一组最优解以及该最优解对应的机器人生产的产品质量、效率、能耗指数;S4:利用S3中模型对根据机器人系统内部存储的实时数据进行预测得到推荐决策变量X*,并将X*下发至机器人操作系统。 | ||
搜索关键词: | 机器人 作业 轨迹 优化 分析 方法 | ||
【主权项】:
1.一种机器人作业轨迹优化分析的方法,其特征在于,包括如下步骤:S1:利用工业机器人系统所记录的数据,采集工业机器人作业轨迹参数,采集工业机器人各关节的作业轨迹参数包括各关节的速度、加速度、角速度及角加速度,构成影响因素矩阵X,将其作为神经网络建模的输入参数,其中决策变量为机器人各关节的速度和加速度;S2:采用影响因素矩阵X作为输入参数,综合产品生产要求和专家经验,确定加工工件的质量、效率、能耗的样本为指标矩阵Y,利用BP神经网络进行训练、检验,建立机器人轨迹规划模型;S3:利用MBFO算法对机器人作业轨迹模型进行优化,得到各决策变量的一组最优解以及该最优解对应的机器人生产的产品质量、效率、能耗指数;S4:利用S3中模型对根据机器人系统内部存储的实时数据进行预测得到推荐决策变量X*,并将X*下发至机器人操作系统,在操作界面显示推荐最优的机器人末端执行器的速度、加速度、角速度。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于重庆科技学院,未经重庆科技学院许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201710757867.5/,转载请声明来源钻瓜专利网。