[发明专利]一种结合CNN迁移学习和SVDD的图像异常检测方法在审
申请号: | 201710749768.2 | 申请日: | 2017-08-28 |
公开(公告)号: | CN107563431A | 公开(公告)日: | 2018-01-09 |
发明(设计)人: | 唐鹏;吴镜锋;金炜东 | 申请(专利权)人: | 西南交通大学 |
主分类号: | G06K9/62 | 分类号: | G06K9/62;G06N3/04;G06N3/08;G06T7/00 |
代理公司: | 成都信博专利代理有限责任公司51200 | 代理人: | 张辉 |
地址: | 610031 四川省成都市*** | 国省代码: | 四川;51 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开了一种结合CNN迁移学习和SVDD的图像异常检测方法,根据视频数据手工截取待检测图像对象周围的图像,制作待检测的支柱编号数据集,利用卷积神经网络表达图像数据深度特征,采用已经通过预训练好的权重和参数的网络模型,通过训练的网络模型充分提取支柱编号样本的特征,解决非平衡数据中少数类数据的问题;构造出需要在分类器中参与训练的正样本特征集,最后利用支持向量数据描述算法和网格搜索等进行参数优化,形成正样本特征训练的正常域,通过此边界实现对接触网编号状态的识别。本发明自动化处理水平较高,可以极大的降低操作人员工作量,及早发现接触网支柱编号异常问题,提高巡检效率。 | ||
搜索关键词: | 一种 结合 cnn 迁移 学习 svdd 图像 异常 检测 方法 | ||
【主权项】:
一种结合CNN迁移学习和SVDD的图像异常检测方法,其特征在于,包括以下步骤:步骤1:对于给定视频数据,截取包括待检测对象图像的样本,制作包含大量正样本和少量负样本的数据集,其中正样本和负样本的比例为10比1;步骤2:对已经预训练好的网络模型进行模型迁移,将正样本集和负样本集中的训练集作为迁移后的卷积神经网络模型中的训练数据,生成CNN中的模型Model1,根据模型Model1提取正样本数据训练特征;步骤3:利用CNN中训练得到的正样本特征作为SVDD分类器的输入,通过SVDD训练正样本特征得到超球体模型Model2;步骤4:将测试样本集中的正样本和负样本通过Model1提取得到待检测的特征,并通过Model2判断测试样本与超球体的关系,最终判断测试样本是否异常。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于西南交通大学,未经西南交通大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201710749768.2/,转载请声明来源钻瓜专利网。
- 上一篇:一种电子锁
- 下一篇:一种基于视觉形状模型的机器人多目标识别方法