[发明专利]基于多尺度分割和融合的高分辨率遥感图像变化检测方法有效
| 申请号: | 201710261895.8 | 申请日: | 2017-04-20 |
| 公开(公告)号: | CN107085708B | 公开(公告)日: | 2020-06-09 |
| 发明(设计)人: | 张钧萍;郭庆乐;李彤 | 申请(专利权)人: | 哈尔滨工业大学 |
| 主分类号: | G06K9/00 | 分类号: | G06K9/00;G06K9/46;G06K9/62 |
| 代理公司: | 哈尔滨市松花江专利商标事务所 23109 | 代理人: | 岳泉清 |
| 地址: | 150001 黑龙*** | 国省代码: | 黑龙江;23 |
| 权利要求书: | 查看更多 | 说明书: | 查看更多 |
| 摘要: | 基于多尺度分割和融合的高分辨率遥感图像变化检测方法,属于高光谱遥感图像技术领域,本发明为解决现有遥感图像变化检测技术对于高分辨率遥感图像的检测精度低、无法保证检测结果的完整性的问题。本发明的具体过程为:采用多尺度分割算法对多时相的高分辨率遥感图像进行空间尺度分割;对分割后的各尺度图像中的目标在对象角度上进行特征提取,用对象特征描述对象本身,进而相对其他时相的遥感图像进行向量分析,获得多个尺度的对象差异图;对获得的多个尺度的对象差异图进行变化信息提取和融合,获得最终的总变化结果图。本发明用于高分辨率遥感图像变化检测。 | ||
| 搜索关键词: | 基于 尺度 分割 融合 高分辨率 遥感 图像 变化 检测 方法 | ||
【主权项】:
基于多尺度分割和融合的高分辨率遥感图像变化检测方法,其特征在于,该检测方法的具体过程为:步骤1、采用多尺度分割算法对多时相的高分辨率遥感图像进行空间尺度分割,空间尺度分为粗尺度和细尺度两个部分,并选择适当的形状因子,利用自上而下区域异质性准则进行合并;步骤2、对步骤1分割后的各尺度图像中的目标在对象角度上进行特征提取,用对象特征描述对象本身,进而相对其他时相的遥感图像进行向量分析,获得多个尺度的对象差异图;步骤3、对步骤2获得的多个尺度的对象差异图进行变化信息提取和融合;首先采用自适应权重的像素级别融合方法,利用变化差异图的方差定义权重,分别得到针对粗尺度大目标和细尺度小目标的融合差异图;然后增加算法的鲁棒性,基于图像二维直方图进行变换信息提取,分别对粗尺度大目标和细尺度小目标变化差异图提取差异,分别获得粗尺度大目标和细尺度小目标的变化结果图;最后利用决策级的融合规则获得最终的总变化结果图。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于哈尔滨工业大学,未经哈尔滨工业大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201710261895.8/,转载请声明来源钻瓜专利网。





