[发明专利]基于蚁群算法和极坐标变换的无人自行车路径规划方法在审
| 申请号: | 201710210979.9 | 申请日: | 2017-03-31 |
| 公开(公告)号: | CN106873599A | 公开(公告)日: | 2017-06-20 |
| 发明(设计)人: | 不公告发明人 | 申请(专利权)人: | 深圳市靖洲科技有限公司 |
| 主分类号: | G05D1/02 | 分类号: | G05D1/02 |
| 代理公司: | 暂无信息 | 代理人: | 暂无信息 |
| 地址: | 518000 广东省深圳市南山区西*** | 国省代码: | 广东;44 |
| 权利要求书: | 查看更多 | 说明书: | 查看更多 |
| 摘要: | 基于蚁群算法和极坐标变换的无人自行车路径规划方法,包括如下步骤(1)利用栅格法进行环境建模;(2)设置蚁群算法的详细参数;(3)设定极坐标的长度、探测最大角度和最小角度;(4)蚁群的初始化,并设定信息素位置范围和速度范围;(5)极坐标和直角坐标之间变换,判断信息素是否有效,直到保证所有信息素有效,检查信息素位置和障碍物位置;(6)计算每个信息素的适应度值并处理;(7)将信息素历史最优适应值数组中最小值与当前全局历史最优值比较并处理;(8)更新信息素的位置和速度信息;(9)将本次迭代的信息素最优值与之前结果比较并处理;(10)最大迭代次数后平滑处理,修改路径并显示结果。 | ||
| 搜索关键词: | 基于 算法 坐标 变换 无人 自行车 路径 规划 方法 | ||
【主权项】:
基于蚁群算法和极坐标变换的无人自行车路径规划方法,其特征在于包括如下步骤:(1)根据无人自行车的工作环境,利用栅格法进行环境建模;(2)设置蚁群算法的详细参数:信息素维度D、最大迭代次数M、信息素数N、信息素变量的最大速度Vmax、学习因子c1,c2和惯性权重W,这三个参数按照一般的蚁群算法选取,信息素维度则由以下参数决定:D≈distance(path)bike_length,信息素变量的最大速度为:Vmax=0.1(αmax‑αmin)/D;(3)设定极坐标的长度、探测最大角度和最小角度,探测最大角度和最小角度一般取0~π/2;(4)根据均匀分布生成随机数的方法,进行蚁群的初始化,并设定环境地图位置范围内的信息素位置范围和速度范围;(5)进行极坐标和直角坐标之间的变换,获得路径x,y坐标值,根据信息素的约束条件判断信息素是否有效,无效则重新初始化,直到保证所有信息素有效,检查信息素位置和障碍物位置;(6)采用路径规划的适应度函数,计算每个信息素的适应度值,将信息素的个体历史最优值和当前信息素适应度值进行比较,若当前的适应度值比历史最优值小,则用当前的适应度值替换个体历史最优值;(7)将信息素历史最优适应值数组中最小值与当前的全局历史最优值进行比较,若其值小于全局最优值,则用最小值替换全局最优值,否则不替换,根据信息素上次取得的迭代历史最优值和当前迭代历史最优值,计算并保存两者之间的最优值;(8)更新种群中信息素的位置和速度信息,若信息素搜索的位置超过了已设定的空间范围,则选取最大位置;(9)将本次迭代的信息素最优值与之前连续迭代结果进行比较,若未发生变化则采用以前优化值,并检查是否达到最大迭代次数,若未达到则反复计算。(10)到达最大迭代次数后,采用舒曼滤波法进行平滑处理,对算出的路径进行修改,显示计算结果与最优路径。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于深圳市靖洲科技有限公司,未经深圳市靖洲科技有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201710210979.9/,转载请声明来源钻瓜专利网。





