[发明专利]基于复数轮廓波卷积神经网络的极化SAR图像分类方法在审

专利信息
申请号: 201710137886.8 申请日: 2017-03-09
公开(公告)号: CN106934419A 公开(公告)日: 2017-07-07
发明(设计)人: 焦李成;马丽媛;孙其功;赵进;马文萍;屈嵘;杨淑媛;侯彪;田小林;尚荣华;张向荣 申请(专利权)人: 西安电子科技大学
主分类号: G06K9/62 分类号: G06K9/62;G06K9/46
代理公司: 陕西电子工业专利中心61205 代理人: 王品华,朱红星
地址: 710071*** 国省代码: 陕西;61
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明公开了一种基于复数轮廓波卷积神经网络的极化SAR图像分类方法,主要解决现有技术分类精度较低的问题。其实现步骤是1.输入待分类极化SAR图像的极化相干矩阵T并归一化;2.根据归一化后的矩阵,分别构造训练数据集和测试数据集的特征矩阵;3.构造复数卷积神经网络,进而得到复数轮廓波卷积神经网络;4.用训练数据集训练复数轮廓波卷积神经网络,得到训练好的模型;5.将测试数据集的特征矩阵输入到训练好的模型中进行分类,得到分类结果。本发明将卷积神经网络延拓至复数域进行运算并提取多尺度、多方向、多分辨特性的图像特征,有效提高了极化SAR图像的分类精度,可用于目标检测与识别。
搜索关键词: 基于 复数 轮廓 卷积 神经网络 极化 sar 图像 分类 方法
【主权项】:
一种基于复数轮廓波卷积神经网络的极化SAR图像分类方法,包括:(1)输入待分类极化SAR图像的极化相干矩阵T;(2)将极化相干矩阵T分为实部特征矩阵T1和虚部特征矩阵T2,分别将实部特征矩阵T1和虚部特征矩阵T2中的元素值归一化到[0,1]之间,得到归一化后的实部特征矩阵F1和归一化后的虚部特征矩阵F2;(3)在归一化后的实部特征矩阵F1和归一化后的虚部特征矩阵F2中的每个元素周围取37×37的块代表中心元素,构成基于图像块的实部特征矩阵F3和基于图像块的虚部特征矩阵F4;(4)将待分类的极化SAR图像地物分为15类,在基于图像块的实部特征矩阵F3中的每类中随机选取200个有标记的元素作为训练样本,其余作为测试样本,得到训练数据集的实部特征矩阵W1和测试数据集的实部特征矩阵W2;在基于图像块的虚部特征矩阵F4中的每类中随机选取200个有标记的元素作为训练样本,其余作为测试样本,得到训练数据集的虚部特征矩阵W3和测试数据集的虚部特征矩阵W4;(5)构造复数卷积神经网络:构造一个由输入层→复数卷积层→复数池化层→复数卷积层→复数池化层→复数卷积层→复数池化层→全连接层→全连接层→softmax分类器组成的10层复数卷积神经网络,给定各层的特征映射图,确定复数卷积层的滤波器尺寸并随机初始化滤波器;(6)构造复数轮廓波卷积神经网络:用非下采样轮廓波变换中的尺度滤波器和方向滤波器构造多尺度深度滤波器,并替换复数卷积神经网络第一个复数卷积层中随机初始化的滤波器,得到由输入层→多尺度深度滤波器层→复数池化层→复数卷积层→复数池化层→复数卷积层→复数池化层→全连接层→全连接层→softmax分类器这10层结构组成的复数轮廓波卷积神经网络;(7)用训练数据集对复数轮廓波卷积神经网络进行训练,得到训练好的模型;(8)将测试数据集的实部特征矩阵W2和虚部特征矩阵W4作为步骤(7)训练好模型的输入,得到测试数据集中每个元素的类别。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于西安电子科技大学,未经西安电子科技大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201710137886.8/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top