[发明专利]一种基于可学习形变场的人脸正面化方法有效

专利信息
申请号: 201710120029.7 申请日: 2017-03-02
公开(公告)号: CN106909904B 公开(公告)日: 2020-06-02
发明(设计)人: 胡蓝青;阚美娜;山世光;陈熙霖 申请(专利权)人: 中科视拓(北京)科技有限公司
主分类号: G06K9/00 分类号: G06K9/00;G06K9/62
代理公司: 暂无信息 代理人: 暂无信息
地址: 100086 北京市海淀区科*** 国省代码: 北京;11
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明公开了一种基于可学习形变场的人脸正面化方法,包括步骤1,获取一批带有姿态标注的图片数据集作为训练/测试集,每个人的图像都包含有各个姿态;步骤2,由三维人脸模型大致计算出各个姿态之间图片像素点的位置对应关系,得到每两个角度图像之间的大致形变场;步骤3,将得到的形变场作为训练目标,得到模型参数W’;步骤4,通过使作用后的图像和目标图像尽量相像继续优化模型W’的参数。本发明不仅能得到既平滑又恢复出更多细节的重构正面图像,且训练比基于3D模型生成形变场的方法简单,耗时更少,能够恢复出保留更多个人特征的图像,对于识别更有帮助,特别是在大姿态角度的人脸上,识别率得到显著提升。
搜索关键词: 一种 基于 学习 形变 正面 方法
【主权项】:
一种基于可学习形变场的人脸正面化方法,其特征在于,包括以下步骤:步骤1,获取一批带有姿态标注的图片数据集作为训练/测试集,每个人的图像都包含有各个姿态;步骤2,由三维人脸模型大致计算出各个姿态之间图片像素点的位置对应关系,根据三维模型在二维平面上的投影图像以及计算像素点的对应位移,得到每两个角度图像之间的大致形变场;步骤3,将在步骤2中得到的形变场作为步骤3的训练目标,由于训练输入图像的姿态和目标图像的姿态都是已知的,就可以将两个姿态之间的形变场作为目标对模型进行预训练,得到模型参数W’;步骤4,将W’作为步骤4的模型参数的初始化值,将目标图像的形变场作为训练目标,该步骤将W’输出出来的形变场作用在输入图像上,从而得到一张特定姿态的图像,通过使作用后的图像和目标图像尽量相像继续优化模型参数W’。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于中科视拓(北京)科技有限公司,未经中科视拓(北京)科技有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201710120029.7/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top