[发明专利]一种复杂环境下的街道垃圾识别方法有效
申请号: | 201710044865.1 | 申请日: | 2017-01-21 |
公开(公告)号: | CN106845408B | 公开(公告)日: | 2023-09-01 |
发明(设计)人: | 黄正;谭敦茂 | 申请(专利权)人: | 浙江联运知慧科技有限公司 |
主分类号: | G06V20/52 | 分类号: | G06V20/52;G06V10/26;G06V10/46;G06V10/764;G06V10/774;G06V10/82;G06T7/246;G06T7/254 |
代理公司: | 杭州丰禾专利事务所有限公司 33214 | 代理人: | 柯奇君 |
地址: | 311100 浙江省*** | 国省代码: | 浙江;33 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明涉及一种街道垃圾识别方法。一种复杂环境下的街道垃圾识别方法,步骤如下:(1)首先获取街道图片并对有垃圾和没有垃圾的区域进行裁剪,构建样本集来训练深层卷积神经网络DCNN;(2)对于要检测的实时街道图片,将其与干净街道图片进行配准以及像素级作差,得到图像的变化区域,根据深层卷积神经网络DCNN的输出向量来判断该区域是否为垃圾,如果是垃圾,则在实时图像上进行标记。本发明能在尽量不遗漏垃圾目标的同时,有效抑制复杂环境以及光照变化等干扰因素所导致的误检测,实现复杂环境下的全天候街道垃圾识别。 | ||
搜索关键词: | 一种 复杂 环境 街道 垃圾 识别 方法 | ||
【主权项】:
一种复杂环境下的街道垃圾识别方法,其特征在于步骤如下:(1)首先获取街道图片并对有垃圾和没有垃圾的区域进行裁剪,构建样本集来训练深层卷积神经网络DCNN;(2)对于要检测的实时街道图片,将其与干净街道图片进行配准以及像素级作差,得到图像的变化区域,实现目标与背景的分离并缩小检测范围,采用R‑CNN算法框架,在作差后的图片上使用图像分割算法获取局部视觉突出区域,即可能出现垃圾的位置,然后将实时图像上每一个可能出现垃圾的区域内的图像数据输入训练好的深层卷积神经网络DCNN进行识别,根据深层卷积神经网络DCNN的输出向量来判断该区域是否为垃圾,如果是垃圾,则在实时图像上进行标记。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于浙江联运知慧科技有限公司,未经浙江联运知慧科技有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201710044865.1/,转载请声明来源钻瓜专利网。
- 上一篇:一种负离子空气净化灯具
- 下一篇:一种港口照明灯组件