[发明专利]一种基于混合多项分布的文本分类算法有效

专利信息
申请号: 201611254483.3 申请日: 2016-12-30
公开(公告)号: CN108268469B 公开(公告)日: 2021-05-14
发明(设计)人: 许飞月;陶波;陈乐焱 申请(专利权)人: 广东精点数据科技股份有限公司
主分类号: G06F16/35 分类号: G06F16/35;G06K9/62
代理公司: 北京隆源天恒知识产权代理事务所(普通合伙) 11473 代理人: 闫冬
地址: 510630 广东省广*** 国省代码: 广东;44
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明提供一种基于混合多项分布的文本分类算法,包括以下步骤:S1:输入训练集文本;S2:计算并保存所有文本类别C的概率分布;S3:初始化混合多项分布的参数值θ、πk以及分量个数K;S4:使用当前参数值θ、πk,计算完整数据的对数似然函数关于隐藏变量后验概率分布的期望;S5:用EM算法训练混合多项分布的参数值θ、πk;S6:对不同的所述分量个数K,分别画出模型对测试集和所述训练集的预测误差图线,选择预测误差最小的K值;S7:输出结果。本发明的有益效果在于,本发明将朴素贝叶斯算法结合混合多项分布,用EM算法对混合模型的参数进行估计,以提高模型的分类精度。
搜索关键词: 一种 基于 混合 多项 分布 文本 分类 算法
【主权项】:
1.一种基于混合多项分布的文本分类算法,其特征在于,包括以下步骤:S1:输入训练集,其文本的类别集合为C={C1,C2,...,CS},所述文本的属性特征集合为x={x1,x2,...,xd};S2:计算并保存所有文本类别为Cj的概率分布,j=1,2……S;S3:初始化混合多项分布的概率参数θ、权重πk以及分量个数K;S4:使用当前参数值θ、πk,计算完整数据的对数似然函数关于隐藏变量后验概率分布的期望;S5:用EM算法训练所述混合多项分布的参数值θ、πk;S6:对不同的所述分量个数K,分别画出模型对测试集和所述训练集的预测误差图线,选择预测误差最小的K值;S7:输出文本类别Cj的概率分布p(Cj),混合多项分布的分量个数K和参数值θ、πk。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于广东精点数据科技股份有限公司,未经广东精点数据科技股份有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201611254483.3/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top