[发明专利]一种基于深度学习的图节点多标签分类方法在审

专利信息
申请号: 201611244725.0 申请日: 2016-12-29
公开(公告)号: CN106997474A 公开(公告)日: 2017-08-01
发明(设计)人: 李涛;王次臣;李华康 申请(专利权)人: 南京邮电大学
主分类号: G06K9/62 分类号: G06K9/62;G06N3/08
代理公司: 南京知识律师事务所32207 代理人: 李湘群
地址: 210023 江苏省*** 国省代码: 江苏;32
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明公开了一种基于深度学习的图节点多标签分类方法,首先加载图数据模块,解析图数据,使用字典的形式保存;生成游走路径模块,完成在图数据中的随机游走,返回生成游走路径;生成节点特征向量模块,将上一步返回的游走路径,以及指定的向量表示维数和上下文窗口大小作为输入,调用word2vec算法计算每一个图节点的特征向量表示;生成训练数据模块,从所有图节点中随机抽取一定百分比的节点作为训练节点数据,对于每一个节点,取其特征向量与该节点对应的标签序列组成二元组作为一个训练样本;最后构建深度置信网络模型。本发明提出的图节点多标签分类算法可以取得比传统的多标签分类算法更高的正确率。
搜索关键词: 一种 基于 深度 学习 节点 标签 分类 方法
【主权项】:
一种基于深度学习的图节点多标签分类方法,其特征在于包含以下步骤:步骤1:加载图数据模块,解析图数据,使用字典的形式保存,其中字典的key表示图中的某一个节点,字典的value表示该节点的邻居节点序列;步骤2:生成游走路径模块,完成在图数据中的随机游走,返回生成游走路径;步骤3:生成节点特征向量模块,将上一步返回的游走路径,以及指定的向量表示维数和上下文窗口大小作为输入,调用word2vec算法计算每一个图节点的特征向量表示;步骤4:生成训练数据模块,从所有图节点中随机抽取一定百分比的节点作为训练节点数据,对于每一个节点,取其特征向量与该节点对应的标签序列组成二元组作为一个训练样本,同时,选取一定百分比的节点作为验证节点数据,剩余节点作为测试节点数据,每一个验证样本和测试样本同样采用二元组的形式;步骤5:构建深度置信网络模型,输入层神经元个数为图节点特征向量的维数,隐层个数及神经元个数可以依据训练效果灵活调整,输出层的神经元个数为标签个数.对于每一个训练样本,其中x向量作为模型输入,y向量作为训练或测试的目标。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于南京邮电大学,未经南京邮电大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201611244725.0/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top