[发明专利]基于数据特征的深度神经网络自训练方法在审
申请号: | 201611054556.4 | 申请日: | 2016-11-25 |
公开(公告)号: | CN106779064A | 公开(公告)日: | 2017-05-31 |
发明(设计)人: | 吴磊;岳翰;武德安;陈鹏;冯江远 | 申请(专利权)人: | 电子科技大学;成都国科海博信息技术股份有限公司 |
主分类号: | G06N3/08 | 分类号: | G06N3/08 |
代理公司: | 北京天奇智新知识产权代理有限公司11340 | 代理人: | 杨春 |
地址: | 611731 四川省成*** | 国省代码: | 四川;51 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开了一种基于数据特征的深度神经网络自训练方法,包括以下步骤从事先准备好的不同样本集提取对应的标准特征,该标准特征表征样本集本身数据分布的特点,并且能够用来唯一区分不同的样本集;将已知样本集与对应的标准特征输入训练器,寻找具有不同特征的样本集需要怎样的参数设置才能达到尽可能高的训练精度;当引入新样本集时,根据新样本集的特征来自动选取一组最优的深度神经网络参数,从而保证当以该参数构造神经网络并对新样本进行训练时,能够得到尽可能高的预测精度。本发明的优点在于利用机器学习算法根据样本数据的特征自动调整深度神经网络的参数,建立合适的网络模型,并能保证能够达到较高的测试精度。 | ||
搜索关键词: | 基于 数据 特征 深度 神经网络 训练 方法 | ||
【主权项】:
一种基于数据特征的深度神经网络自训练方法,其特征在于:包括以下步骤:(1)从事先准备好的不同样本集提取对应的标准特征,该标准特征表征样本集本身数据分布的特点,并且能够用来唯一区分不同的样本集;(2)将已知样本集与对应的标准特征输入训练器,寻找具有不同特征的样本集需要怎样的参数设置才能达到尽可能高的训练精度;(3)当引入新样本集时,根据新样本集的特征来自动选取一组最优的深度神经网络参数,从而保证当以该参数构造神经网络并对新样本进行训练时,能够得到尽可能高的预测精度。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于电子科技大学;成都国科海博信息技术股份有限公司,未经电子科技大学;成都国科海博信息技术股份有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201611054556.4/,转载请声明来源钻瓜专利网。
- 数据显示系统、数据中继设备、数据中继方法、数据系统、接收设备和数据读取方法
- 数据记录方法、数据记录装置、数据记录媒体、数据重播方法和数据重播装置
- 数据发送方法、数据发送系统、数据发送装置以及数据结构
- 数据显示系统、数据中继设备、数据中继方法及数据系统
- 数据嵌入装置、数据嵌入方法、数据提取装置及数据提取方法
- 数据管理装置、数据编辑装置、数据阅览装置、数据管理方法、数据编辑方法以及数据阅览方法
- 数据发送和数据接收设备、数据发送和数据接收方法
- 数据发送装置、数据接收装置、数据收发系统、数据发送方法、数据接收方法和数据收发方法
- 数据发送方法、数据再现方法、数据发送装置及数据再现装置
- 数据发送方法、数据再现方法、数据发送装置及数据再现装置