[发明专利]基于数据特征的深度神经网络自训练方法在审

专利信息
申请号: 201611054556.4 申请日: 2016-11-25
公开(公告)号: CN106779064A 公开(公告)日: 2017-05-31
发明(设计)人: 吴磊;岳翰;武德安;陈鹏;冯江远 申请(专利权)人: 电子科技大学;成都国科海博信息技术股份有限公司
主分类号: G06N3/08 分类号: G06N3/08
代理公司: 北京天奇智新知识产权代理有限公司11340 代理人: 杨春
地址: 611731 四川省成*** 国省代码: 四川;51
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明公开了一种基于数据特征的深度神经网络自训练方法,包括以下步骤从事先准备好的不同样本集提取对应的标准特征,该标准特征表征样本集本身数据分布的特点,并且能够用来唯一区分不同的样本集;将已知样本集与对应的标准特征输入训练器,寻找具有不同特征的样本集需要怎样的参数设置才能达到尽可能高的训练精度;当引入新样本集时,根据新样本集的特征来自动选取一组最优的深度神经网络参数,从而保证当以该参数构造神经网络并对新样本进行训练时,能够得到尽可能高的预测精度。本发明的优点在于利用机器学习算法根据样本数据的特征自动调整深度神经网络的参数,建立合适的网络模型,并能保证能够达到较高的测试精度。
搜索关键词: 基于 数据 特征 深度 神经网络 训练 方法
【主权项】:
一种基于数据特征的深度神经网络自训练方法,其特征在于:包括以下步骤:(1)从事先准备好的不同样本集提取对应的标准特征,该标准特征表征样本集本身数据分布的特点,并且能够用来唯一区分不同的样本集;(2)将已知样本集与对应的标准特征输入训练器,寻找具有不同特征的样本集需要怎样的参数设置才能达到尽可能高的训练精度;(3)当引入新样本集时,根据新样本集的特征来自动选取一组最优的深度神经网络参数,从而保证当以该参数构造神经网络并对新样本进行训练时,能够得到尽可能高的预测精度。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于电子科技大学;成都国科海博信息技术股份有限公司,未经电子科技大学;成都国科海博信息技术股份有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201611054556.4/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top