[发明专利]一种基于不均衡医疗图像数据集的分类方法与系统有效
申请号: | 201610997896.4 | 申请日: | 2016-11-11 |
公开(公告)号: | CN106529598B | 公开(公告)日: | 2020-05-08 |
发明(设计)人: | 韩赫;李建强;张苓琳;胡启东 | 申请(专利权)人: | 北京工业大学 |
主分类号: | G06K9/62 | 分类号: | G06K9/62;G06K9/46 |
代理公司: | 北京思海天达知识产权代理有限公司 11203 | 代理人: | 张慧 |
地址: | 100124 *** | 国省代码: | 北京;11 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开一种基于不均衡医疗图像数据集的分类方法与系统,包括:提取原始医疗图像绿色通道分量;利用直方图均衡化修正提取出的灰度图像;分别从修正后的图像提取纹理特征、小波特征、轮辅特征;对提取出的特征样本按样本间距离排序;对排序后的样本划分均匀特征子集,且保证子集间的差异性;使用SVM算法与BP神经网络算法分别训练特征子集产生子分类器;组合子分类器,投票得出最终分类结果。采用本发明的技术方案,对多分类集成学习中负样本分类准确率有明显提升,这对于如医疗领域中数据集样本分布高度倾斜、多分类器训练中负样本准确率有明显提升。有助于减少误诊,从而提高分类器的实用价值。 | ||
搜索关键词: | 一种 基于 均衡 医疗 图像 数据 分类 方法 系统 | ||
【主权项】:
一种基于不均衡医疗图像数据集的分类方法,其特征在于,包括:提取原始医疗图像绿色通道分量;利用直方图均衡化修正提取出的灰度图像;分别从修正后的图像提取纹理特征、小波特征、轮辅特征;对提取出的特征样本按样本间距离排序;对排序后的样本划分均匀特征子集,且保证子集间的差异性;使用SVM算法与BP神经网络算法分别训练特征子集产生子分类器;组合子分类器,投票得出最终分类结果。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于北京工业大学,未经北京工业大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201610997896.4/,转载请声明来源钻瓜专利网。
- 彩色图像和单色图像的图像处理
- 图像编码/图像解码方法以及图像编码/图像解码装置
- 图像处理装置、图像形成装置、图像读取装置、图像处理方法
- 图像解密方法、图像加密方法、图像解密装置、图像加密装置、图像解密程序以及图像加密程序
- 图像解密方法、图像加密方法、图像解密装置、图像加密装置、图像解密程序以及图像加密程序
- 图像编码方法、图像解码方法、图像编码装置、图像解码装置、图像编码程序以及图像解码程序
- 图像编码方法、图像解码方法、图像编码装置、图像解码装置、图像编码程序、以及图像解码程序
- 图像形成设备、图像形成系统和图像形成方法
- 图像编码装置、图像编码方法、图像编码程序、图像解码装置、图像解码方法及图像解码程序
- 图像编码装置、图像编码方法、图像编码程序、图像解码装置、图像解码方法及图像解码程序