[发明专利]一种基于多标度卷积神经网络的外汇交易预测模型在审
申请号: | 201610943652.8 | 申请日: | 2016-11-02 |
公开(公告)号: | CN106503853A | 公开(公告)日: | 2017-03-15 |
发明(设计)人: | 朱佳;武兴成 | 申请(专利权)人: | 华南师范大学 |
主分类号: | G06Q10/04 | 分类号: | G06Q10/04;G06Q40/04;G06N3/02 |
代理公司: | 广州粤高专利商标代理有限公司44102 | 代理人: | 林瑞云,彭东梅 |
地址: | 510631 广东*** | 国省代码: | 广东;44 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明涉及一种基于多标度卷积神经网络的外汇交易预测模型,包括以下步骤第一步,数据处理将外汇交易实时价格数据转换为价格曲线图像;第二步,建立卷积神经网络体系该步骤包括预处理步骤,即拍摄各时间段价格曲线图,并将曲线图图像转换成灰度图,结合嵌入特征得到预处理特征;还包括用推拉窗和修正线性单元处理卷积神经网络,提取局部语境,通过内核处理局部语境集合,并对其进行连接得到局部语境图;第三步,实施并行特征学习将价格特征计入局部语境图,作为两个共享的完全连接的隐藏层的输入,进行并行特征学习,产生外汇价格变动预测的输出。该系统不仅能快速止损,实现最优化操作,还能克服过拟合问题,避免人为操作的局限和失误。 | ||
搜索关键词: | 一种 基于 标度 卷积 神经网络 外汇交易 预测 模型 | ||
【主权项】:
一种基于多标度卷积神经网络的外汇交易预测模型,其特征在于,包括以下步骤:第一步,数据处理:将外汇交易实时价格数据转换为价格曲线图像;第二步,建立卷积神经网络体系:该步骤包括预处理步骤,即拍摄各时间段价格曲线图,并将曲线图图像转换成灰度图,结合嵌入特征得到预处理特征;还包括用推拉窗和修正线性单元处理卷积神经网络,提取局部语境,通过内核处理局部语境集合,并对其进行连接得到局部语境图;第三步,实施并行特征学习:将价格特征计入局部语境图,作为两个共享的完全连接的隐藏层的输入,进行并行特征学习,产生外汇价格变动预测的输出。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于华南师范大学,未经华南师范大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201610943652.8/,转载请声明来源钻瓜专利网。
- 同类专利
- 专利分类
G06 计算;推算;计数
G06Q 专门适用于行政、商业、金融、管理、监督或预测目的的数据处理系统或方法;其他类目不包含的专门适用于行政、商业、金融、管理、监督或预测目的的处理系统或方法
G06Q10-00 行政;管理
G06Q10-02 .预定,例如用于门票、服务或事件的
G06Q10-04 .预测或优化,例如线性规划、“旅行商问题”或“下料问题”
G06Q10-06 .资源、工作流、人员或项目管理,例如组织、规划、调度或分配时间、人员或机器资源;企业规划;组织模型
G06Q10-08 .物流,例如仓储、装货、配送或运输;存货或库存管理,例如订货、采购或平衡订单
G06Q10-10 .办公自动化,例如电子邮件或群件的计算机辅助管理
G06Q 专门适用于行政、商业、金融、管理、监督或预测目的的数据处理系统或方法;其他类目不包含的专门适用于行政、商业、金融、管理、监督或预测目的的处理系统或方法
G06Q10-00 行政;管理
G06Q10-02 .预定,例如用于门票、服务或事件的
G06Q10-04 .预测或优化,例如线性规划、“旅行商问题”或“下料问题”
G06Q10-06 .资源、工作流、人员或项目管理,例如组织、规划、调度或分配时间、人员或机器资源;企业规划;组织模型
G06Q10-08 .物流,例如仓储、装货、配送或运输;存货或库存管理,例如订货、采购或平衡订单
G06Q10-10 .办公自动化,例如电子邮件或群件的计算机辅助管理