[发明专利]一种基于深度稀疏自编码网络的人脸情感识别方法在审

专利信息
申请号: 201610924367.1 申请日: 2016-10-24
公开(公告)号: CN106503654A 公开(公告)日: 2017-03-15
发明(设计)人: 陈略峰;吴敏;周梦甜;刘振焘;曹卫华;陈鑫 申请(专利权)人: 中国地质大学(武汉)
主分类号: G06K9/00 分类号: G06K9/00;G06K9/62;G06N3/08
代理公司: 武汉华旭知识产权事务所42214 代理人: 刘荣,江钊芳
地址: 430074 湖*** 国省代码: 湖北;42
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明公开了一种基于深度稀疏自编码网络的人脸情感识别方法,包括以下步骤步骤1数据获取及预处理;步骤2建立深度稀疏自编码网络;步骤3深度稀疏网络自动编解码;步骤4训练Softmax分类器;步骤5整体网络权值微调。本发明的方法引入稀疏性参数,即减少神经元节点个数情况下,可以学习到数据的压缩表示,有效提高训练和识别速度,并通过反向传播算法与梯度下降法对网络权值进行微调从而达到全局最优,能够克服训练过程中局部极值与梯度弥散问题,从而提高识别性能。
搜索关键词: 一种 基于 深度 稀疏 编码 网络 情感 识别 方法
【主权项】:
一种基于深度稀疏自编码网络的人脸情感识别方法,其特征在于,包括以下步骤:步骤1:数据获取与预处理:对训练样本中的人脸图像进行感兴趣区域剪裁,采用灰度均衡方法对剪裁后的人脸图像预处理,然后将表情图像中的像素信息进行归一化;所述训练样本中的人脸图像的人脸表情信息已知;步骤2:建立深度稀疏自编码网络:根据归一化后的人脸图像的像素信息以及人脸表情信息,建立一个1+n+1层的深度稀疏自编码网络,其中第1层为输入层,最后一层为分类器输出层,中间n层为隐藏层,通过进行RBM预训练,对深度稀疏自编码网络中的1+n层的权重进行初始化;所述n为设置值;步骤3:深度稀疏自编码网络解码:将经过步骤2中RBM预训练得到的初始权重矩阵定义为wi,i∈[1,n],展开深度稀疏自编码网络,产生编码网络与解码网络并实现稀疏性表示;步骤4:训练Softmax分类器:在深度稀疏自编码网络顶层搭建Softmax分类器,并对深度稀疏自编码网络学习到的特征进行分类,采用梯度下降法对Softmax分类器进行训练;步骤5:整体网络权值微调:将包括Softmax分类器在内的整个深度稀疏自编码网络视为一个模型,利用反向传播算法计算整体代价函数的偏导数,并采用梯度下降法对整体深度稀疏自编码网络权值进行微调从而达到全局最优,从而提高人脸情感识别性能。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于中国地质大学(武汉),未经中国地质大学(武汉)许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201610924367.1/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top