[发明专利]一种图像超分辨率重构的方法有效

专利信息
申请号: 201610830974.1 申请日: 2016-09-19
公开(公告)号: CN106485656B 公开(公告)日: 2019-10-18
发明(设计)人: 方杰;蔡琳琳;冯久超 申请(专利权)人: 华南理工大学
主分类号: G06T3/40 分类号: G06T3/40;G06T7/45;G06K9/62
代理公司: 广州市华学知识产权代理有限公司 44245 代理人: 李斌
地址: 510640 广*** 国省代码: 广东;44
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明公开了一种图像超分辨率重构的方法,步骤包括:将高分辨率图像进行处理得到低分辨率图像的插值图像,接着训练得到高低分辨率字典对;输入低分辨率图像,进行插值处理,得到低分辨率图像的插值图像;将低分辨率的插值图像分解为低分辨率的结构部分、纹理部分,舍弃低分辨率的纹理部分;将低分辨率的插值图像进行提取特征,得到低分辨率图像特征;根据高低分辨率字典对,对低分辨率图像特征进行稀疏重建,得到高分辨率图像纹理部分;将高分辨率图像纹理部分与低分辨率的结构部分合并,得到重构后的高分辨率图像。本发明能够针对性分类训练对应的样本,然后根据分类训练对应的字典对用于后续的超分辨率重构,更能准确地提高重构图像分辨率。
搜索关键词: 一种 图像 分辨率 方法
【主权项】:
1.一种图像超分辨率重构的方法,其特征在于,包括以下步骤:S1、将高分辨率图像进行降采样和插值处理,得到低分辨率图像的插值图像;S2、将低分辨率图像的插值图像作为训练样本进行训练,得到高低分辨率字典对;S3、输入低分辨率图像,对其进行插值处理,得到低分辨率图像的插值图像;S4、将低分辨率的插值图像分解为低分辨率的结构部分、纹理部分,舍弃低分辨率的纹理部分;S5、将步骤S3的低分辨率的插值图像进行提取特征,得到低分辨率图像特征;S6、根据步骤S2得到的高低分辨率字典对,对低分辨率图像特征进行稀疏重建,得到高分辨率图像纹理部分;S7、将高分辨率图像纹理部分与步骤S4中低分辨率的结构部分合并,得到重构后的高分辨率图像;所述步骤S2中进行训练的过程具体为:S21、对低分辨率图像的插值图像进行分块得到图像块,使用滤波器对图像块进行处理,得到图像块的灰度共生矩阵;S22、将灰度共生矩阵进行求熵处理得到熵值,判断熵值是否为0,若熵值大于0,得到丰富纹理图像块;若熵值等于0,则得到平滑均匀图像块;S23、将丰富纹理图像块进行训练得到丰富纹理的高分辨率和低分辨率图像;S24、将步骤S1中的高分辨率图像利用灰度共生矩阵进行提取特征,直接得到平滑均匀图像块;S25、将平滑均匀图像块训练得到平滑均匀的高分辨率和低分辨率图像;S26、结合丰富纹理的高分辨率和低分辨率图像、平滑均匀的高分辨率和低分辨率图像,得到高低分辨率字典对。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于华南理工大学,未经华南理工大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201610830974.1/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top