[发明专利]一种支持向量机的并行训练方法及装置在审

专利信息
申请号: 201610509835.9 申请日: 2016-07-01
公开(公告)号: CN106203485A 公开(公告)日: 2016-12-07
发明(设计)人: 吴斌;赛金辰 申请(专利权)人: 北京邮电大学
主分类号: G06K9/62 分类号: G06K9/62
代理公司: 北京柏杉松知识产权代理事务所(普通合伙) 11413 代理人: 孙翠贤;项京
地址: 100876 *** 国省代码: 北京;11
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明实施例公开了一种支持向量机的并行训练方法及装置,方法包括:将训练样本集划分为子训练样本集,对每个子训练样本集并行训练,得到初始支持向量,从初始支持向量中选取r个作为目标样本集,确定当前权值ω表达式及预测标签yi′,每遍历一个目标样本集中样本判断其分类是否正确,根据判断结果,对当前未遍历的目标样本集中样本的预测标签更新,遍历结束后,将分类不正确的目标样本集中样本的拉格朗日乘子进行更新,最后,根据ω=sv及f(x)=ωx确定最大间隔分离超平面方程f(x)。可见,本方案中将当前权值ω分解为s和v乘积的形式,避免了每次更新当前权值都要遍历所有初始支持向量的时间消耗,提高了分类准确率,减少了运行时间。
搜索关键词: 一种 支持 向量 并行 训练 方法 装置
【主权项】:
一种支持向量机的并行训练方法,其特征在于,包括:步骤1:获取训练样本集,并将所述训练样本集划分为n个子训练样本集,其中,n为偶数;步骤2:对所述n个子训练样本集进行并行训练,得到n组支持向量,其中,所述子训练样本集与所述支持向量具有唯一对应性;步骤3:将所述n组支持向量每两组归并为一组,得到n/2组支持向量;步骤4:将所述n/2组支持向量中的每组支持向量作为一个子训练样本集,返回步骤2,直到训练次数达到预设值后,得到初始支持向量,执行步骤5,其中,每个所述初始支持向量携带其真实标签yi及拉格朗日乘子i=1,2…m,m为所述初始支持向量的数量;步骤5:从所述初始支持向量中选取r个作为目标样本集;步骤6:令ω=sv,根据所述初始支持向量的真实标签yi及拉格朗日乘子确定当前权值ω表达式,根据所述初始支持向量的拉格朗日乘子确定每个目标样本集中样本的拉格朗日乘子αi,并根据ω确定每个目标样本集中样本的预测标签y′i,其中,s初始化为1;步骤7:遍历所述目标样本集,每遍历一个所述目标样本集中样本,将s更新为其倍,并根据该目标样本集中样本的预测标签y′i判断该目标样本集中样本分类是否正确,如果正确,执行步骤8,否则,执行步骤9,其中,t为预设的目标样本集确定次数;步骤8:根据当前s值对当前未遍历的目标样本集中样本的预测标签进行更新,继续遍历所述目标样本集,直至遍历结束;步骤9:确定更新后的该目标样本集中样本的拉格朗日乘子αi,将该更新后的目标样本集中样本的拉格朗日乘子αi记录在预先建立的哈希表中,并根据当前s值及更新后的αi对当前未遍历的目标样本集中样本的预测标签进行更新,继续遍历所述目标样本集,直至遍历结束,其中,更新后的该目标样本集中样本的拉格朗日乘子αi为其倍,λ为正则化参数;步骤10:在所述目标样本集遍历结束后,根据所述哈希表,将分类不正确的目标样本集中样本的拉格朗日乘子进行更新;步骤11:返回步骤5,直到达到预设的目标样本集确定次数后,遍历当前的初始支持向量,选取当前对应拉格朗日乘子不为0的初始支持向量作为最终支持向量进行线性加权得到v,根据ω=sv及f(x)=ωx确定最大间隔分离超平面方程f(x),完成分类模型训练。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于北京邮电大学,未经北京邮电大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201610509835.9/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top