[发明专利]一种支持向量机的并行训练方法及装置在审
| 申请号: | 201610509835.9 | 申请日: | 2016-07-01 |
| 公开(公告)号: | CN106203485A | 公开(公告)日: | 2016-12-07 |
| 发明(设计)人: | 吴斌;赛金辰 | 申请(专利权)人: | 北京邮电大学 |
| 主分类号: | G06K9/62 | 分类号: | G06K9/62 |
| 代理公司: | 北京柏杉松知识产权代理事务所(普通合伙) 11413 | 代理人: | 孙翠贤;项京 |
| 地址: | 100876 *** | 国省代码: | 北京;11 |
| 权利要求书: | 查看更多 | 说明书: | 查看更多 |
| 摘要: | 本发明实施例公开了一种支持向量机的并行训练方法及装置,方法包括:将训练样本集划分为子训练样本集,对每个子训练样本集并行训练,得到初始支持向量,从初始支持向量中选取r个作为目标样本集,确定当前权值ω表达式及预测标签yi′,每遍历一个目标样本集中样本判断其分类是否正确,根据判断结果,对当前未遍历的目标样本集中样本的预测标签更新,遍历结束后,将分类不正确的目标样本集中样本的拉格朗日乘子进行更新,最后,根据ω=sv及f(x)=ωx确定最大间隔分离超平面方程f(x)。可见,本方案中将当前权值ω分解为s和v乘积的形式,避免了每次更新当前权值都要遍历所有初始支持向量的时间消耗,提高了分类准确率,减少了运行时间。 | ||
| 搜索关键词: | 一种 支持 向量 并行 训练 方法 装置 | ||
【主权项】:
一种支持向量机的并行训练方法,其特征在于,包括:步骤1:获取训练样本集,并将所述训练样本集划分为n个子训练样本集,其中,n为偶数;步骤2:对所述n个子训练样本集进行并行训练,得到n组支持向量,其中,所述子训练样本集与所述支持向量具有唯一对应性;步骤3:将所述n组支持向量每两组归并为一组,得到n/2组支持向量;步骤4:将所述n/2组支持向量中的每组支持向量作为一个子训练样本集,返回步骤2,直到训练次数达到预设值后,得到初始支持向量,执行步骤5,其中,每个所述初始支持向量携带其真实标签yi及拉格朗日乘子
i=1,2…m,m为所述初始支持向量的数量;步骤5:从所述初始支持向量中选取r个作为目标样本集;步骤6:令ω=sv,根据所述初始支持向量的真实标签yi及拉格朗日乘子
确定当前权值ω表达式,根据所述初始支持向量的拉格朗日乘子
确定每个目标样本集中样本的拉格朗日乘子αi,并根据ω确定每个目标样本集中样本的预测标签y′i,其中,
s初始化为1;步骤7:遍历所述目标样本集,每遍历一个所述目标样本集中样本,将s更新为其
倍,并根据该目标样本集中样本的预测标签y′i判断该目标样本集中样本分类是否正确,如果正确,执行步骤8,否则,执行步骤9,其中,t为预设的目标样本集确定次数;步骤8:根据当前s值对当前未遍历的目标样本集中样本的预测标签进行更新,继续遍历所述目标样本集,直至遍历结束;步骤9:确定更新后的该目标样本集中样本的拉格朗日乘子αi,将该更新后的目标样本集中样本的拉格朗日乘子αi记录在预先建立的哈希表中,并根据当前s值及更新后的αi对当前未遍历的目标样本集中样本的预测标签进行更新,继续遍历所述目标样本集,直至遍历结束,其中,更新后的该目标样本集中样本的拉格朗日乘子αi为其
倍,λ为正则化参数;步骤10:在所述目标样本集遍历结束后,根据所述哈希表,将分类不正确的目标样本集中样本的拉格朗日乘子进行更新;步骤11:返回步骤5,直到达到预设的目标样本集确定次数后,遍历当前的初始支持向量,选取当前对应拉格朗日乘子不为0的初始支持向量作为最终支持向量进行线性加权得到v,根据ω=sv及f(x)=ωx确定最大间隔分离超平面方程f(x),完成分类模型训练。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于北京邮电大学,未经北京邮电大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201610509835.9/,转载请声明来源钻瓜专利网。





