[发明专利]基于稀疏编码器和支持向量机的滚动轴承故障诊断方法有效
申请号: | 201610424089.3 | 申请日: | 2016-06-16 |
公开(公告)号: | CN106124212B | 公开(公告)日: | 2018-09-04 |
发明(设计)人: | 时培明;梁凯;赵娜;韩东颖 | 申请(专利权)人: | 燕山大学 |
主分类号: | G01M13/04 | 分类号: | G01M13/04;G06K9/62 |
代理公司: | 秦皇岛一诚知识产权事务所(普通合伙) 13116 | 代理人: | 李合印 |
地址: | 066004 河北省*** | 国省代码: | 河北;13 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 一种基于稀疏编码器和支持向量机的滚动轴承故障诊断方法,采用基于层叠稀疏自动编码器的深度学习自主认知的方法,由简单到复杂、由低级到高级自动地提取输入数据的本质特征,自动挖掘出隐藏在已知数据中的丰富信息;采用深度学习提取特征并将两层学习到的特征综合到一起构成支持向量机的输入,通过支持向量机分类从而可以判断滚动轴承的工作状态和故障类型。本发明方法能提高故障特征提取效率和准确率。 | ||
搜索关键词: | 基于 稀疏 编码器 支持 向量 滚动轴承 故障诊断 方法 | ||
【主权项】:
1.一种基于稀疏编码器和支持向量机的滚动轴承故障诊断方法,其特征在于,所述诊断方法包括以下步骤:步骤1,以滚动轴承的原始振动数据作为输入样本,采用小波去噪,去除干扰噪声然后对去噪后得到的滚动轴承振动数据进行快速傅里叶变换得到新的轴承振动频谱信号X;步骤2,通过线性归一化方法,对轴承振动频谱信号X进行归一化处理后得到轴承振动频谱信号X1;步骤3,将轴承振动频谱信号X1输入SSAE模型,对滚动轴承特征进行深度学习;其中,SSAE模型是多个稀疏编码器(Sparse Auto Encoder,SAE)叠加,第一级稀疏编码器的输出作为第二级稀疏编码器的输入,第二级稀疏编码器的输出作为第三级稀疏编码器的输入,以此类推;通过对数据的逐层学习完成DNN网络预训练,然后通过带标签的样本使用BP算法以误差最小化为原则自上向下传输完成DNN网络的微调;步骤4,将步骤3中提取到的两层特征综合到一起构成支持向量机的输入,以粒子群算法对支持向量机的参数进行优化,通过训练样本对支持向量机进行训练,然后使用训练好的支持向量机对测试样本进行测试,完成对滚动轴承的故障诊断。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于燕山大学,未经燕山大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201610424089.3/,转载请声明来源钻瓜专利网。
- 上一篇:一种汽车配件的推车
- 下一篇:一种3D手机面板的浸润性测试仪的载物台装置