[发明专利]一种碳排放量计算方法及系统在审

专利信息
申请号: 201610383017.9 申请日: 2016-06-01
公开(公告)号: CN105975799A 公开(公告)日: 2016-09-28
发明(设计)人: 殷立宝;陈启召;刘彦丰 申请(专利权)人: 广东电网有限责任公司电力科学研究院
主分类号: G06F19/00 分类号: G06F19/00;G06N3/08
代理公司: 北京集佳知识产权代理有限公司 11227 代理人: 王宝筠
地址: 510080 广东*** 国省代码: 广东;44
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明公开了一种碳排放量计算方法及系统,归一化预设的多组碳排放量影响参数和相应碳排放量数据,得到多组归一化数据,其中,碳排放量影响参数包括:机组负荷、一次风率和锅炉效率等;将多组归一化数据分为训练样本和测试样本;基于训练样本和预设神经元传递函数对BP神经网络进行训练,获取网络训练模型;依据测试样本对网络训练模型进行测试,获取并判断测试结果是否在预设范围内;若否,返回执行上述获取网络训练模型这一步骤;若是,将网络训练模型确定为BP神经网络计算模型并反归一化测试结果;基于BP神经网络计算模型,根据当前碳排放量影响参数进行计算,得到相应反归一化碳排放量计算值。基于上述方法,提高碳排放量计算结果的准确度。
搜索关键词: 一种 排放量 计算方法 系统
【主权项】:
一种碳排放量计算方法,其特征在于,应用于碳排放量计算系统,包括:获取预设的多组碳排放量影响参数下各自生成的碳排放量数据,将所述多组碳排放量影响参数和相应的碳排放量数据进行归一化处理,得到多组归一化数据;将所述多组归一化数据划分为训练样本和测试样本;基于所述训练样本和预设神经元传递函数f(x)对BP神经网络进行训练,获取网络训练模型;依据所述测试样本对所述网络训练模型进行测试,获取并判断测试结果是否在预设范围内;若否,返回执行所述基于所述训练样本和预设神经元传递函数f(x)对BP神经网络进行训练,获取网络训练模型这一步骤;若是,将所述网络训练模型确定为BP神经网络计算模型,并将所述测试结果反归一化;基于所述BP神经网络计算模型,根据当前碳排放量影响参数进行计算,得到相应反归一化的碳排放量计算值。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于广东电网有限责任公司电力科学研究院,未经广东电网有限责任公司电力科学研究院许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201610383017.9/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top