[发明专利]一种计及可调度和可平移负荷的海岛微电网优化调度方法有效
申请号: | 201610326517.9 | 申请日: | 2016-05-17 |
公开(公告)号: | CN105990838B | 公开(公告)日: | 2019-01-18 |
发明(设计)人: | 罗平;杨亚;陈巧勇;吴晨曦 | 申请(专利权)人: | 杭州电子科技大学 |
主分类号: | G06Q10/04 | 分类号: | G06Q10/04;G06Q10/06;G06Q50/06;H02J3/14;H02J3/00;H02J3/46 |
代理公司: | 杭州君度专利代理事务所(特殊普通合伙) 33240 | 代理人: | 杜军 |
地址: | 310018 浙*** | 国省代码: | 浙江;33 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开了一种计及可调度和可平移负荷的海岛微电网优化调度方法,本发明包括以下步骤:1.确定孤岛运行的风光储海岛微电网经济调度的数学模型;2.获取模型中的各类参数;3.以柴油机启动次数最少为目标,利用经典量子粒子群优化算法确定可平移和可调度负荷的数量和分布时段;4、确定孤岛模式下风光柴储微电网日前优化调度的主要策略;5.在优化后的负荷曲线的基础上,利用增加了早熟判断机制、混沌变异的量子粒子群优化算法对柴油发电机和蓄电池的出力进行优化。本发明综合考虑源、储、荷的优化调度更符合电力系统市场化的要求,具有良好的全局收敛性能和较快的收敛速度,为海岛微电网的日前优化经济调度提供了一种行之有效的方法。 | ||
搜索关键词: | 一种 调度 平移 负荷 海岛 电网 优化 方法 | ||
【主权项】:
1.一种计及可调度和可平移负荷的海岛微电网优化调度方法,其特征在于,按照以下步骤实施:步骤1、确定孤岛运行的风光储海岛微电网经济调度的数学模型设置孤岛微电网日前经济调度模型为min CL=w1·(CPV+CWT+Cdiesel+CBAT)+w2·CEN (1)其中,w1和w2分别为经济和环境目标权重系数;CPV、CWT为光伏发电系统和风力发电系统的运行维护成本,Cdiesel为柴油发电机的运行维护成本、燃料成本和启停成本总和,CBAT为蓄电池运行维护成本;CEN微电网中柴油发电机的污染物排放治理费用;其中CPV和CWT可表示为:![]()
式中γPV和γWT为光伏发电系统和风力发电系统的运行维护成本系数;PPV(t)和PWT(t)为在调度时段t光伏发电输出功率和风力发电输出功率;Cdiesel可用下式表示为:
式中CDE为柴油发电机燃料消耗量,CDE=a·Pdiesel_N·u+b·Pdiesel,Pdiesel_N为柴油发电机的额定输出功率(kW),Pdiesel为柴油发电机的实际输出功率(kW),u为柴油发电机启停状态,1表示启动,0表示停止,a为柴油发电机燃耗特性曲线斜率截距系数,b为柴油发电机燃耗特性曲线斜率;pr为柴油发电机所用燃料单价(元/L);γdiesel为柴油发电机运行维护成本系数,Pdiesel(t)为t时输出功率;Cstart和Cstop为的启动和停运成本,其计算式如下所示:![]()
式中n为柴油发电机台数,zti(t)为第i台柴油发电机在t时刻的状态,t=0为停止状态,t=1为启动状态,ηon和ηoff分别为柴油发电机启动费用系数和停运费用系数;CBAT和CEN可由下式计算得:![]()
式中γBAT为储能蓄电池运行维护成本系数,PBAT(t)为储能蓄电池在t时段的输出功率,充电为负值,放电为正值;τj为第j类污染物治污费用系数(元/kg),δj为第j类污染物的排放系数(g/kW·h);优化经济调度过程中所受到的约束条件有:约束条件1:功率平衡约束,在不考虑网损的情况下,光伏发电、风力发电、柴油机和蓄电池的输出功率应该与负荷所需功率相等PPV(t)+PWT(t)+Pdiesel(t)+PBAT(t)=Pload(t) (9)式中PPV(t)、PWT(t)、Pdiesel(t)、PBAT(t)和Pload(t)分别为t时刻光伏发电系统、风力发电系统、柴油机、蓄电池所输出的功率和负荷所需的功率;约束条件2:蓄电池SOC值的约束,即蓄电池荷电状态应在允许运行的区间范围;SOCmin≤SOC(t)≤SOCmax (10)式中SOCmin和SOCmax为蓄电池荷电状态允许达到的最小值和最大值;约束条件3:蓄电池的充放电功率约束,保证蓄电池既不能过充也不能过放;PBAT_min≤PBAT(t)≤PBAT_max (11)式中PBAT_min和PBAT_max为所允许的蓄电池最大充电功率和最大放电功率;约束条件4:柴油发电机输出功率的不等式约束Pdiesel_min≤Pdiesel(t)≤Pdiesel_max (12)式中Pdiesel_min和Pdiesel_max为柴油发电机最小启动功率和最大输出功率;约束条件5:柴油发电机上下爬坡率限值
式中Pup和Pdown为柴油发电机的上、下爬坡率限值;步骤2、获取模型中的各类参数;包括柴油发电机、光伏发电、风力发电和蓄电池的运行维护费用系数,柴油机发电机污染物排放系数及治污费用系数,柴油机启停费用系数,光伏、风机的预测出力和负荷的预测功率,蓄电池荷电状态约束、柴油机爬坡率约束和经济和环境目标权重系数;步骤3、以柴油机启动次数最少为目标,根据可平移和可调度负荷在总负荷中的比例,确定可平移和可调度负荷的数量和分布时段;采用量子行为粒子群算法对可平移和可调度负荷进行优化,其中对于可平移负荷主要优化其在各个调度时段的数量,而对于可调度空调负荷主要结合环境温度优化其在各个时段的设置温度,并输出优化后的计及可平移和可调度负荷曲线;3.1可平移负荷优化模型的目标函数为:
Ps,t=Pf+Pin,t‑Pout,t (15)![]()
式中Ps,t为t时段负荷平移后的预测功率,Pobj,t为该时段目标负荷功率,Pf为t时段预测负荷的原始功率,Pin,t为移入该时段的可平移负荷功率,Pout,t为移出该时段的可平移负荷功率,i为可平移负荷的种类,k1为所有可平移负荷总数,qi,h‑t为第i类负荷从h时段移入t时段的数量,Pi,1为第i类负荷在第一个用电时段的需求功率,qi,h‑(t‑l)为第i类负荷从h时段移入t‑l时段的数量,k2为用电延续时间超过一个调度时段的负荷总数,Pi,(l+1)为第i类负荷在l+1个用电时段的需求功率,lmax为所有可平移负荷中用电时段长的负荷最后一个用电时段,qi,t‑h′为第i类负荷从t时段移出至h′时段的数量,qi,(t‑l)‑h′为第i类负荷从t‑l时段移出至h′时段的数量;可平移负荷满足的约束条件有每类可平移负荷总量和可平移负荷允许的平移时段,表达式如(18)和(19)所示;(1)可平移负荷总量
式中qi,h为负荷平移前第i类负荷在调度时段h的数量,q′i,h为负荷平移后第i类负荷在调度时段的h的数量,所有负荷数量均为该类负荷第一个用电时段在该调度时段的数量,平移前后负荷种类不变,故k1=k1′;(2)可平移负荷允许的平移时段
式中Ai为第i类负荷所允许移入时段的集合,Bi为第i负荷所允许移出时段的集合;3.2建立可调度负荷的目标函数和约束条件可调度负荷主要考虑空调类负荷,由于空调类负荷受天气影响较大,因而如何建立温度和空调类负荷之间的关系模型至关重要;选用的单个空调的物理模型为:
式中Ti,t和Ta,i,t分别为在调度时段t空调的温度及所处的环境温度(℃);gi,t表示在t时段空调所处的状态,1表示空调处于开启状态,0表示空调处于关闭状态;Pt,i为第i个空调在工作时由热质量转入或转出的能量速率(kW);Δt′为空调离散物理模型的时间间隔(h);ui,t为干扰信号所引起的温度变化,用以表述人为或环境随机因素引起的空调温度变化,可以通过方差为Δt′σ2的正态分布来描述;Ri和Ci分别为空调的热阻(℃/kW)和热容(kWh/℃);空调的工作状态gi,t表示为:![]()
![]()
式中Ts,i为空调的设置温度,ΔTse,i为空调温度的感应灵敏区间;由上式分析可得,M台空调在时段t内的功率需求PM,t可表示为:
式中ηi为空调的工作效率,对于蒸汽压缩型空调η>1,其数值和能效比相等;由式(20)至式(24)可知,空调的功率和状态都受到温度的影响,通过调节温度即可以达到调控空调功率需求的目的;通常情况下调整方法为:Ti,t=Ti,t‑1+ΔTo,t |ΔTo,t|≤ΔTo,max (25)式中Ti,t为空调在调度时段t所设置的温度,ΔTo,t为调度中心下发的调控命令,需满足约束条件为|ΔTo,t|≤ΔTo,max,其目的是为了防止在调整幅度过大时对环境的舒适度造成影响;实际中由于微电网的负荷比较集中,认为环境温度和各空调参数一致,得到简化模型如下:
3.3以柴油发电机启动次数最少为目标制定目标负荷,以各个调度时段可平移负荷的数量和可调度空调负荷在各个时段的设置温度为优化变量,根据步骤3.1和步骤3.2中的目标函数和约束条件,利用经典量子行为粒子群算法进行优化求解,得到优化后的计及可平移和可调度负荷曲线;步骤4、确定孤岛模式下风光柴储微电网日前优化调度模型的调度策略;1)当风光功率满足负荷仍过剩时,则剩余功率给蓄电池充电,蓄电池充电功率达到限值或蓄电池SOC达到限值后仍有剩余功率时,则将剩余功率丢弃;2)当风光功率无法满足负荷时,比较负荷缺电功率和蓄电池最大输出功率,当负荷相对风光功率缺额大于蓄电池最大出力,即Pload‑PPV‑PWT>PBAT_max时,在随机蓄电池出力后计算蓄电池SOC;根据功率平衡约束计算柴油发电机出力,判断柴油发电机出力是否大于最小启动功率;若柴油发电机出力小于最小启动功率,则将最小启动功率作为柴油发电机出力;同时判断蓄电池SOC是否满足荷电状态上下限约束,若蓄电池SOC大于最大值约束,则置SOC为最大值,根据SOC求出蓄电池出力,再由功率平衡约束求柴油发电机出力;若蓄电池SOC小于最小值约束,则判断柴油发电机出力是否小于最小启动功率,若柴油发电机出力小于最小启动功率,则置蓄电池SOC为最小值,根据SOC求出蓄电池出力,再由功率平衡约束求柴油发电机出力;否则将最小启动功率作为柴油发电机出力,然后再根据柴油发电机出力求取蓄电池出力,最后再判断蓄电池SOC;当负荷相对风光功率缺额小于蓄电池最大出力,即Pload‑PPV‑PWT<PBAT_max时,若风光功率相对负荷的功率缺额小于柴油发电机最小启动功率,则判断柴油出力是否大于最小启动功率以及蓄电池SOC是否满足上下限约束;若柴油发电机出力小于最小启动功率,则置柴油发电机出力为0,接着计算蓄电池出力并判断其SOC是否满足约束;若蓄电池SOC大于其上限约束,则置柴油发电机出力为0后再计算蓄电池出力,若蓄电池SOC小于其下限约束,则将最小启动功率作为柴油发电机出力;若风光功率相对负荷的功率缺额大于柴油发电机最小启动功率,则判断柴油发电机出力是否小于最小启动功率以及蓄电池SOC是否满足上下限约束,若柴油发电机出力小于最小启动功率,则将最小启动功率作为柴油发电机出力,再依据功率平衡约束计算蓄电池出力;若蓄电池SOC大于其上限约束,则置柴油发电机出力为0后再计算蓄电池出力,若蓄电池SOC小于其下限约束,判断柴油发电机出力是否大于最小启动功率,若柴油发电机出力小于最小启动功率,则将最小启动功率作为柴油发电机出力,再依据功率平衡约束计算蓄电池出力,最后判断蓄电池SOC是否满足约束,依据蓄电池SOC调整其出力,若柴油发电机出力大于最小启动功率,则置蓄电池SOC为最小下限,并根据SOC计算蓄电池出力,最后由平衡约束计算柴油发电机出力;3)蓄电池和柴油发电机的出力大小只有在满足约束的时候由算法随机生成进行寻优,当约束不满足时,则对蓄电池和柴油发电机出力进行边界化约束;步骤5、定义量子粒子群算法的粒子个数,粒子维数和最大迭代次数;产生满足柯西分布的初始粒子群,利用优化后的负荷曲线获得日前优化经济调度问题的初始可行解集合,即柴油发电机的初始出力和蓄电池SOC的状态;步骤6、以目标函数的值作为粒子当前位置的适应度值,对粒子个体最好位置pbest和全局最优粒子位置gbest进行更新,并利用量子粒子群算法的粒子更新公式(27)对粒子进行更新,迭代次数加1;
式中Xi,j为第i个粒子的第j维,α称为收缩扩张因子,u和κ为[0,1]之间服从均匀分布的随机数,pi,j表示第i个粒子所对应的吸引子的第j维,
为[0,1]之间服从均匀分布的随机数,Pi,j为第i个粒子个体最好位置的第j维,Gj为所有粒子的全局最好位置的第j维,
Cj定义为所有粒子个体平均最好位置,可由下式计算得到:
式中M为粒子的个数;步骤7、利用早熟判断机制对粒子群进行判断,如果满足早熟判断标准,则以一定的概率对粒子群实施混沌变异操作,如果变异得到的粒子优于原有的粒子,则用变异得到的粒子替代原有的粒子,否则以模拟退火算法中的“上山”概率替换原有的粒子;完成整个操作后迭代次数加1,若不满足早熟判断标准,则转到步骤8;步骤8、判断程序运行次数是否达到设定的迭代次数,如未达到,则T=λT,λ为系数,其中T为退火温度;返回步骤6继续进行计算;如达到最大迭代次数,则终止循环,输出最终计算的结果,即蓄电池和柴油发电机各时段的出力,同时还可输出整个调度周期内优化后总的经济运行费用。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于杭州电子科技大学,未经杭州电子科技大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201610326517.9/,转载请声明来源钻瓜专利网。
- 上一篇:无浪涌电流的电池充电装置和方法
- 下一篇:一种用于电网互联的直流电网测试模型
- 同类专利
- 专利分类
G06 计算;推算;计数
G06Q 专门适用于行政、商业、金融、管理、监督或预测目的的数据处理系统或方法;其他类目不包含的专门适用于行政、商业、金融、管理、监督或预测目的的处理系统或方法
G06Q10-00 行政;管理
G06Q10-02 .预定,例如用于门票、服务或事件的
G06Q10-04 .预测或优化,例如线性规划、“旅行商问题”或“下料问题”
G06Q10-06 .资源、工作流、人员或项目管理,例如组织、规划、调度或分配时间、人员或机器资源;企业规划;组织模型
G06Q10-08 .物流,例如仓储、装货、配送或运输;存货或库存管理,例如订货、采购或平衡订单
G06Q10-10 .办公自动化,例如电子邮件或群件的计算机辅助管理
G06Q 专门适用于行政、商业、金融、管理、监督或预测目的的数据处理系统或方法;其他类目不包含的专门适用于行政、商业、金融、管理、监督或预测目的的处理系统或方法
G06Q10-00 行政;管理
G06Q10-02 .预定,例如用于门票、服务或事件的
G06Q10-04 .预测或优化,例如线性规划、“旅行商问题”或“下料问题”
G06Q10-06 .资源、工作流、人员或项目管理,例如组织、规划、调度或分配时间、人员或机器资源;企业规划;组织模型
G06Q10-08 .物流,例如仓储、装货、配送或运输;存货或库存管理,例如订货、采购或平衡订单
G06Q10-10 .办公自动化,例如电子邮件或群件的计算机辅助管理