[发明专利]一种基于组合预测的风电机组状态参数异常辨识方法在审
申请号: | 201610032371.7 | 申请日: | 2016-01-18 |
公开(公告)号: | CN105719002A | 公开(公告)日: | 2016-06-29 |
发明(设计)人: | 李剑;周湶;王有元;陈伟根;杜林;万福;王飞鹏;颜永龙;陈俊生 | 申请(专利权)人: | 重庆大学 |
主分类号: | G06N3/08 | 分类号: | G06N3/08 |
代理公司: | 北京同恒源知识产权代理有限公司 11275 | 代理人: | 赵荣之 |
地址: | 400044 重*** | 国省代码: | 重庆;85 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明涉及一种基于组合预测的风电机组状态参数异常辨识方法,包括以下步骤:选取合适的风电场SCADA数据,得到训练数据和测试数据;建立目标参数的单项预测模型(包括BPNN和LSSVM),对组合模型进行优化,选择合适的权重;采用组合预测模型预测目标参数,并与实际值对比,得到残差;计算均方根误差(RMSE),获得RMSE的变化情况;若RMSE小于阈值,判定状态参数正常,若RMSE大于阈值,采用相同的残差数据计算熵值;若熵值小于阈值,判定状态参数正常,虽然此时RMSE大于阈值,但是残差数据变化不大,不能判定为出现异常;若熵值大于阈值,则判定状态参数出现异常。本发明采用的方法易于编程实现,能够快速准确地对风电机组状态参数进行异常辨识。 | ||
搜索关键词: | 一种 基于 组合 预测 机组 状态 参数 异常 辨识 方法 | ||
【主权项】:
一种基于组合预测的风电机组状态参数异常辨识方法,其特征在于:包括以下步骤:S1:选取合适的风电场SCADA数据,得到训练数据和测试数据;S2:建立目标参数的单项预测模型(包括BPNN和LSSVM),对组合模型进行优化,选择合适的权重;S3:采用组合预测模型预测目标参数,并与实际值对比,得到残差;S4:根据以下公式计算均方根误差(RMSE),为反映变化趋势,需计算连续的相同时间长度的RMSE,获得RMSE的变化情况;![]()
式中,S为均方根误差,n为样本数,ri为实际值,
为根据模型得到的预测值;S5:若RMSE小于阈值,判定状态参数正常;S6:若RMSE大于阈值,采用相同的残差数据计算熵值;S7:若熵值小于阈值,判定状态参数正常,虽然此时RMSE大于阈值,但是残差数据变化不大,不能判定为出现异常;S8:若熵值大于阈值,则判定状态参数出现异常。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于重庆大学,未经重庆大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201610032371.7/,转载请声明来源钻瓜专利网。