[发明专利]一种基于支持向量机的医疗影像检查疾病分类方法有效

专利信息
申请号: 201510242216.3 申请日: 2015-05-12
公开(公告)号: CN104834940A 公开(公告)日: 2015-08-12
发明(设计)人: 何必仕;倪杭建;徐哲 申请(专利权)人: 杭州电子科技大学
主分类号: G06K9/62 分类号: G06K9/62
代理公司: 浙江杭州金通专利事务所有限公司 33100 代理人: 王佳健
地址: 310018 浙*** 国省代码: 浙江;33
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明公开了一种基于支持向量机的医疗影像检查疾病分类方法。本发明使用K-means聚类完成对检查文本数据的聚类,并将聚类好的检查文本作为SVM分类器的训练集以及测试集,最后针对检查文本的特有情况,对SVM分类器的训练过程使用了一种优化的训练过程,以此来提高SVM分类器的分类效果。
搜索关键词: 一种 基于 支持 向量 医疗 影像 检查 疾病 分类 方法
【主权项】:
一种基于支持向量机的医疗影像检查疾病分类方法,其特征在于该方法包括以下步骤:步骤1:首先对RIS数据库中的检查文本数据使用k‑means聚类方法聚成十大类,聚成十个类别后,借助国际疾病类型分类标准ICD‑10将这十个类别进行疾病类型编码;将编码后的十大类文本数据作为医疗影像疾病标准语料库,并以此作为分类的训练数据以及测试数据;步骤2:从十大类检查文本数据中抽取其中一部分记录作为分类的训练模型,而将剩余的检查文本数据作为测试样本,用于检测分类模型的分类精度;文本分类使用支持向量机方法:步骤3:针对检查文本分类过程中支持向量机分类器的建立过程进行优化;使用训练样本完成支持向量机分类器的建立后,将剩余的样本作为测试样本来检测分类器的分类精度;在完成测试集的分类后,通过建立分类结果的混淆矩阵,来判断哪些检查文本被错分,找出这些错分的文本并将其加入到原属类别的训练样本中,以此来组成新的训练样本,最后再将新的训练样本通过步骤2来进行训练支持向量机分类器。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于杭州电子科技大学,未经杭州电子科技大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201510242216.3/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top