[发明专利]基于高精度工业相机的移动制孔机器人基准找正方法有效

专利信息
申请号: 201510133459.3 申请日: 2015-03-25
公开(公告)号: CN104759945B 公开(公告)日: 2017-04-19
发明(设计)人: 王战玺;李飞飞;王宁;秦现生;谭小群;白晶;王增翠;武俊强;刘健;王玮;郭欣;杨奇 申请(专利权)人: 西北工业大学
主分类号: B23Q17/22 分类号: B23Q17/22;B23Q17/24
代理公司: 西北工业大学专利中心61204 代理人: 陈星
地址: 710072 *** 国省代码: 陕西;61
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明提出了一种基于高精度工业相机的移动制孔机器人基准找正方法,属于工业机器人标定技术领域。该方法利用高精度工业相机和Z向激光距离传感器确定基准孔的三维坐标值,以此来确定零组件和工业机器人的相对位置关系,多次循环调整工业机器人直到基准孔附近零组件平面和工业机器人末端刀具垂直角度符合要求,基准孔在相机坐标系中也同时达到预先设定的标准位置,再利用当前基准孔在机器人底座坐标系的坐标值,建立工件坐标系。本发明能够全自动进行基准检测,精度高,效率高,经济实用,操作工序简单易懂。
搜索关键词: 基于 高精度 工业 相机 移动 机器人 基准 方法
【主权项】:
一种基于高精度工业相机的移动制孔机器人基准找正方法,其特征在于:包括以下步骤:步骤1:在移动制孔机器人制孔刀具周围布置四个激光距离传感器A、B、C、D和一个相机,相机轴线和移动制孔机器人制孔刀具电主轴轴线平行,相机侧边还安装有一个Z向激光距离传感器;步骤2:利用标定圆盘,通过以下步骤对四个激光距离传感器进行标定,所述标定圆盘由盘身和中心杆组成,中心杆与盘身保证垂直度为90±0.05°:步骤2.1:将移动制孔机器人制孔刀具保持竖直状态,并将中心杆装夹在移动制孔机器人制孔刀具的刀柄上;步骤2.2:调整四个激光距离传感器,使其将激光点均打在标定圆盘盘面上;步骤2.3:移动制孔机器人制孔刀具电主轴沿轴向运动,带动标定圆盘轴向运动,观察四个激光距离传感器在盘面上的激光点运动轨迹;调整四个激光距离传感器,使四个激光距离传感器在盘面上的激光点运动轨迹相互平行,且任意三个激光距离传感器在盘面上的激光点运动轨迹不共线;步骤2.4:分别测量计算四个激光距离传感器光轴与标定圆盘盘面的夹角步骤3:轴向调整移动制孔机器人制孔刀具电主轴,使标定圆盘盘面与模拟工作面重合;所述模拟工作面指沿电主轴进给方向的,且与移动制孔机器人制孔刀具中处于缩回状态的压力鼻平面距离为l的平面;l为制孔时,待制孔零组件平面和处于缩回状态的压力鼻平面的距离;测量当前状态下四个激光距离传感器的距离读数sA,sB,sC,sD,以及Z向激光距离传感器测得的与标定圆盘盘面距离读数s0;步骤4:在标定圆盘盘面上建立与移动制孔机器人制孔刀具固连的零面坐标系ObXbYbZb,并得到四个激光距离传感器在盘面上的激光点在零面坐标系ObXbYbZb中的坐标值(xA,yA),(xB,yB),(xC,yC),(xD,yD);零面坐标系原点选择为不包含Z向激光距离传感器的任意一个激光距离传感器在盘面上的激光点,并以该激光点的运动轨迹为ObYb轴;ObXb轴处于盘面上,且ObXb垂直于ObYb轴;ObYb轴正方向与工具坐标系OtXtYtZt的OtYt轴正方向夹角为锐角,ObXb轴正方向与工具坐标系OtXtYtZt的OtXt轴正方向夹角为锐角;ObZb轴正方向由ObYb轴正方向以及ObXb轴正方向按照右手定则确定;所述工具坐标系OtXtYtZt与移动制孔机器人制孔刀具末端固连,本步骤中工具坐标系OtXtYtZt原点处于模拟工作面上,OtXt轴和OtYt轴在模拟工作面上,电主轴进给方向为OtZt轴正方向,移动制孔机器人法兰坐标系OFXFYFZF的OFXF轴正方向在模拟工作面上的投影为OtXt轴正方向,OFYF轴正方向在模拟工作面上的投影为OtYt轴正方向;建立相机坐标系OvXvYvZv,相机坐标系OvXvYvZv与移动制孔机器人末端执行器固连,本步骤中相机坐标系OvXvYvZv原点处于模拟工作面上,电主轴进给方向为OvZv轴正方向,OvXvYv平面与模拟工作面重合;移除标定圆盘;步骤5:移动移动制孔机器人,并通过分析相机拍摄图像,使待制孔零组件上已经打好的基准孔中心与相机视野中心的偏差Δx、Δy满足设定范围要求,且Z向激光距离传感器测得的基准孔距离与标准距离的差值Δz也满足设定范围要求;所述标准距离为步骤3中得到的s0;步骤6:保持移动制孔机器人末端姿态不变,沿模拟工作面移动移动制孔机器人,使工具坐标系OtXtYtZt的原点运动到步骤5完成后得到的相机坐标系的原点位置;并按照以下步骤进行法向调平:步骤6.1:四个激光距离传感器将激光点A'、B'、C'、D'打在待制孔零组件表面,得到四个激光距离传感器的测量距离值sA’,sB’,sC’,sD’;根据sA’,sB’,sC’,sD’,步骤2.4得到的以及步骤3得到的sA,sB,sC,sD,计算得到激光点A'、B'、C'、D'在零面坐标系ObXbYbZb的坐标值;步骤6.2:由激光点A'、B'、C'、D'在零面坐标系ObXbYbZb的坐标值计算得到四个平面A'B'C'、A'B'D'、A'C'D'、B'C'D'的法向量,取四个平面A'B'C'、A'B'D'、A'C'D'、B'C'D'法向量的平均值为待制孔零组件表面法向量n1;步骤6.3:根据法向量n1在零面坐标系ObXbYbZb中的坐标,得到法向量n1与ObZb轴的夹角α1,若α1在±0.2°范围内,则法向调平结束,进入步骤7,否则根据法向量n1在零面坐标系ObXbYbZb中的坐标,得到将零面坐标系ObXbYbZb旋转至ObZb轴与法向量n1重合时,ObXb轴的旋转角度γ和ObYb轴的旋转角度β;按照角度γ和角度β移动移动制孔机器人,使工具坐标系的OtXt轴旋转角度γ,OtYt轴旋转角度β,并返回步骤6.1;步骤7:保持移动制孔机器人末端姿态不变,沿模拟工作面移动移动制孔机器人,使相机坐标系OvXvYvZv的原点运动到步骤6法向调平完成后得到的工具坐标系的原点位置;通过分析相机拍摄图像,判断待制孔零组件上已经打好的基准孔中心与相机视野中心的偏差Δx、Δy是否满足设定范围要求,判断Z向激光距离传感器测得的基准孔距离与标准距离的差值Δz是否也满足设定范围要求;若Δx、Δy、Δz均满足设定范围要求,则以此时相机坐标系原点在机器人底座坐标系中的坐标作为基准孔中心在机器人底座坐标系中的坐标,否则返回步骤5;步骤8:重复步骤5到步骤7,得到所有基准孔中心在机器人底座坐标系中的坐标,根据所有基准孔中心在机器人底座坐标系中的坐标,建立待制孔零组件的实际工件坐标系。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于西北工业大学,未经西北工业大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201510133459.3/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top