[发明专利]一种基于贝叶斯网络的追尾预警方法有效
申请号: | 201410381532.4 | 申请日: | 2014-08-06 |
公开(公告)号: | CN104182618B | 公开(公告)日: | 2017-06-30 |
发明(设计)人: | 陈晨;李美莲;裴庆祺;薛刚;吕宁 | 申请(专利权)人: | 西安电子科技大学 |
主分类号: | G06F19/00 | 分类号: | G06F19/00;G08G1/16 |
代理公司: | 北京科亿知识产权代理事务所(普通合伙)11350 | 代理人: | 汤东凤 |
地址: | 710071 陕西省*** | 国省代码: | 陕西;61 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 一种基于贝叶斯网络的追尾预警方法,选取天气情况Y1、道路情况Y2、驾驶员反应时间Y3、后车与前车的距离Y4、后车速度Y5、后车相对于前车的速度差Y6和后车加速度Y7作为追尾事故Y8的变量节点,得到追尾事故的贝叶斯网络的节点集YY={Y1,Y2,Y3,Y4,Y5,Y6,Y7,Y8},确定变量节点值域;仿真追尾事故的交通场景,构成追尾事故的贝叶斯网络学习数据集,对该学习数据集离散处理;通过离散学习数据集,构造追尾事故的贝叶斯网络的结构,计算该结构中节点的条件概率分布;得到检验数据样本,预测检验数据样本中除追尾事故Y8的各个节点在下一时刻的取值并离散处理;利用所述贝叶斯网络,计算下一时刻发生追尾事故的概率;设定阀值,若下一时刻发生追尾事故概率大于阀值,采取预警措施。 | ||
搜索关键词: | 一种 基于 贝叶斯 网络 追尾 预警 方法 | ||
【主权项】:
一种基于贝叶斯网络的追尾预警方法,其特征在于:其包括,S1选取天气情况Y1、道路情况Y2、驾驶员反应时间Y3、后车与前车的距离Y4、后车速度Y5、后车相对于前车的速度差Y6和后车加速度Y7作为追尾事故Y8的变量节点,得到追尾事故的贝叶斯网络的节点集Y为:Y={Y1,Y2,Y3,Y4,Y5,Y6,Y7,Y8},并确定各个变量节点的值域;确定各个变量节点的值域包括:设天气情况Y1包括:晴、雨、雪;设道路情况Y2包括:干燥路面、潮湿路面、冰雪路面;设驾驶员反应时间Y3分为三个区域:Y3≤0.5s、0.5s<Y3≤1.5s、Y3>1.5s;设后车与前车的距离Y4分为两个区域:Y4≤L、Y4>L,其中,L是车辆的期望安全车距;设后车速度Y5分为三个区域:Y5≤21m/s、21m/s<Y5≤28m/s、Y5>28m/s;设后车相对于前车的速度差Y6分为两个区域:Y6≤0、Y6>0;设后车加速度Y7分为三个区域:Y7≤‑0.25m/s2、‑0.25m/s2<Y7≤0.25m/s2、Y7>0.25m/s2;设追尾事故Y8包括:没有发生追尾事故、发生追尾事故;S2仿真追尾事故的交通场景,构成追尾事故的贝叶斯网络的学习数据集,并对该学习数据集进行离散处理;S3利用节点集Y和离散的学习数据集,构造追尾事故的贝叶斯网络的结构;S4并计算该结构中各个节点的条件概率分布;S5使用交通模拟软件得到检验数据样本,预测检验数据样本中除追尾事故Y8的各个节点在下一时刻的取值并进行离散处理;S6利用所述贝叶斯网络,计算下一时刻发生追尾事故的概率;S7设定阀值,若下一时刻发生追尾事故的概率大于阀值,则采取预警措施。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于西安电子科技大学,未经西安电子科技大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201410381532.4/,转载请声明来源钻瓜专利网。
- 同类专利
- 专利分类
G06 计算;推算;计数
G06F 电数字数据处理
G06F19-00 专门适用于特定应用的数字计算或数据处理的设备或方法
G06F19-10 .生物信息学,即计算分子生物学中的遗传或蛋白质相关的数据处理方法或系统
G06F19-12 ..用于系统生物学的建模或仿真,例如:概率模型或动态模型,遗传基因管理网络,蛋白质交互作用网络或新陈代谢作用网络
G06F19-14 ..用于发展或进化的,例如:进化的保存区域决定或进化树结构
G06F19-16 ..用于分子结构的,例如:结构排序,结构或功能关系,蛋白质折叠,结构域拓扑,用结构数据的药靶,涉及二维或三维结构的
G06F19-18 ..用于功能性基因组学或蛋白质组学的,例如:基因型–表型关联,不均衡连接,种群遗传学,结合位置鉴定,变异发生,基因型或染色体组的注释,蛋白质相互作用或蛋白质核酸的相互作用
G06F 电数字数据处理
G06F19-00 专门适用于特定应用的数字计算或数据处理的设备或方法
G06F19-10 .生物信息学,即计算分子生物学中的遗传或蛋白质相关的数据处理方法或系统
G06F19-12 ..用于系统生物学的建模或仿真,例如:概率模型或动态模型,遗传基因管理网络,蛋白质交互作用网络或新陈代谢作用网络
G06F19-14 ..用于发展或进化的,例如:进化的保存区域决定或进化树结构
G06F19-16 ..用于分子结构的,例如:结构排序,结构或功能关系,蛋白质折叠,结构域拓扑,用结构数据的药靶,涉及二维或三维结构的
G06F19-18 ..用于功能性基因组学或蛋白质组学的,例如:基因型–表型关联,不均衡连接,种群遗传学,结合位置鉴定,变异发生,基因型或染色体组的注释,蛋白质相互作用或蛋白质核酸的相互作用