[发明专利]一种优化的基于神经网络的桥梁损伤识别方法在审
| 申请号: | 201410363614.6 | 申请日: | 2014-07-28 |
| 公开(公告)号: | CN104200004A | 公开(公告)日: | 2014-12-10 |
| 发明(设计)人: | 吴朝霞;金伟;王立夫;赵玉倩;邵元隆;李俞成 | 申请(专利权)人: | 东北大学 |
| 主分类号: | G06F17/50 | 分类号: | G06F17/50;G06N3/02;G06K9/66 |
| 代理公司: | 北京联创佳为专利事务所(普通合伙) 11362 | 代理人: | 郭防;刘美莲 |
| 地址: | 110819 辽宁*** | 国省代码: | 辽宁;21 |
| 权利要求书: | 查看更多 | 说明书: | 查看更多 |
| 摘要: | 本发明公开了一种优化的基于神经网络的桥梁损伤识别方法,包括:S1,构造样本数据;S2,确定网络拓扑结构;S3,训练及测试;S4,损伤识别:将桥梁的实时应变数据输入训练好的BP神经网络,实现桥梁的损伤识别;其中,所述的桥梁的实时应变数据是通过最优布设的传感器获得的,且以最少的不可识别模型的个数Ymin为目标函数,Ymin所对应的传感器的布设位置即为最优的传感器布设。本发明可以实现利用最少的传感器且能最大程度的区分结构的各种可能的损伤情况,同时可以使得识别结果具有较高的精度并趋于稳定。 | ||
| 搜索关键词: | 一种 优化 基于 神经网络 桥梁 损伤 识别 方法 | ||
【主权项】:
一种优化的基于神经网络的桥梁损伤识别方法,其特征在于,包括以下步骤:S1,构造样本数据:利用有限元方法建立全桥的实体有限元模型,对该实体有限元模型进行修正,并利用修正后的实体有限元模型模拟不同荷载情况下桥梁不同位置的受力情况,获得桥梁完好及不同损伤情况下的模拟应变数据,将相应的应变变化率作为BP神经网络的样本数据;S2,确定网络拓扑结构:确定BP神经网络隐含层的层数及各个层所含神经元的个数;同时初始化神经网络的权值阈值;S3,训练及测试:采用梯度下降动量算法对BP神经网络进行训练并利用测试样本对神经网络进行测试;S4,损伤识别:将桥梁的实时应变数据输入训练好的BP神经网络,实现桥梁的损伤识别;其中,所述的桥梁的实时应变数据是通过最优布设的传感器获得的,且以最少的不可识别模型的个数Ymin为目标函数,Ymin所对应的传感器的布设位置即为最优的传感器布设。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于东北大学;,未经东北大学;许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201410363614.6/,转载请声明来源钻瓜专利网。
- 上一篇:三维空间软件的配模方法及系统
- 下一篇:信息管理系统及方法





