[发明专利]一种基于耦合主题模型的协同滤波方法有效

专利信息
申请号: 201410069229.0 申请日: 2014-02-27
公开(公告)号: CN103903163B 公开(公告)日: 2017-05-10
发明(设计)人: 王亮;吴书;徐松 申请(专利权)人: 中国科学院自动化研究所
主分类号: G06F17/00 分类号: G06F17/00
代理公司: 中科专利商标代理有限责任公司11021 代理人: 宋焰琴
地址: 100190 *** 国省代码: 北京;11
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明公开了一种基于耦合主题模型的协同滤波方法,用于在推荐系统中有效结合历史评分信息与用户生成内容(User‑generated Content,简称UGC),通过进行评分预测进行有效推荐。该方法包括以下步骤1)获取用户生成内容的记录;2)获取用户对产品的评分记录;3)提取用户文档和产品文档;4)利用耦合主题模型学习用户特征向量和产品特征向量;5)根据特征向量计算目标用户对不同产品的评分,来进行相应的产品推荐。本发明引入对用户生成内容信息的分析,能够直接的显式的发现用户兴趣和产品属性,而且有效解决了评分矩阵的稀疏问题,获得比基于用户评分信息的预测更准确的效果。
搜索关键词: 一种 基于 耦合 主题 模型 协同 滤波 方法
【主权项】:
一种基于耦合主题模型的协同滤波方法,其特征在于,该方法包括以下步骤:步骤S1,获取用户生成内容记录,每个用户生成内容对应特定的用户和产品;步骤S2,获取用户对产品的历史评分信息,将部分历史评分信息作为训练集,剩下的作为测试集,分别构建不完全观测评分矩阵,即根据部分用户对部分产品的评分构建不完全观测评分矩阵,得到的训练集评分矩阵R作为耦合主题模型的评分输入;步骤S3,根据用户生成内容,提取用户文档dU和产品文档dV,其中,所述用户文档dU为与用户有关的用户生成内容,所述产品文档dV为与产品有关的用户生成内容,每个文档使用其包括的单词的词频来表示,并将每个文档的词袋表达向量WU和WV建模为可见单元,作为耦合主题模型的内容输入;步骤S4,结合所述步骤S2得到的训练集评分矩阵R和所述步骤S3得到的用户文档dU、产品文档dV,利用耦合主题模型学习得到用户特征向量ηU和产品特征向量ηV;步骤S5,根据步骤S4得到的用户特征向量ηU和产品特征向量ηV,利用计算用户对不同产品的评分,然后将得到的预测评分与测试集评分进行对比,衡量所述耦合主题模型的可靠性,最后针对特定用户,根据预测评分的高低得到推荐产品列表,从而进行产品推荐;其中,所述耦合主题模型观测变量(R,WU,WV)的生成过程为:1)对每个用户i:a)从K元正态分布N(μU,∑U)中采样一个K维向量作为用户i的特征向量ηU,i,其中,ηU,i为用户i的特征向量,μU,∑U为正态分布参数;b)对用户文档dU,i中的每个单词WU,i,t;I)从多项分布Mult(θU,i)中采样一个值作为单词WU,i,t的主题分配zU,i,t,其中,zU,i,t为单词WU,i,t的主题分配,θU,i为多项分布参数,且θU,i=π(ηU,i)=exp{ηU,i}/∑kexp{ηU,i,k};II)把采样得到的zU,i,t作为选择器,选择第zU,i,t个主题,根据多项分布采样得到单词WU,i,t,其中,WU,i,t为用户i的文档中第t个单词,为多项分布参数;2)对每个产品j:a)从K元正态分布N(μV,∑V)采样一个K维向量作为产品j的特征向量ηV,j,其中,ηV,j为产品j的特征向量,μV,∑V为正态分布参数;b)对用户文档dV,j中的每个单词WV,j,t;I)从多项分布Mult(θV,j)中采样一个值作为单词WV,j,t的主题分配zV,j,t,其中,zV,j,t为单词WV,j,t的主题分配,θV,j为多项分布参数,且θV,j=π(ηV,j)=exp{ηV,j}/∑kexp{ηV,j,k};II)把采样得到的zV,j,t作为选择器,选择第zV,j,t个主题,根据多项分布采样得到单词wV,j,t,其中,wV,j,t为产品j的文档中第t个单词,为多项分布参数;3)从正态分布中采样得到用户i对产品j的评分Ri,j,其中,该正态分布是以为均值,σ2为方差;其中,π(η)是映射函数。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于中国科学院自动化研究所,未经中国科学院自动化研究所许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201410069229.0/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top