[发明专利]基于自适应模糊神经网络模型CT灌注图像智能融合方法有效

专利信息
申请号: 201310733460.0 申请日: 2013-12-26
公开(公告)号: CN103700083B 公开(公告)日: 2017-02-22
发明(设计)人: 何洪林;钱俊;魏立飞;赵育新;谢峻 申请(专利权)人: 中国人民解放军广州军区武汉总医院
主分类号: G06T5/50 分类号: G06T5/50
代理公司: 武汉荆楚联合知识产权代理有限公司42215 代理人: 王健
地址: 430070 湖*** 国省代码: 湖北;42
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明公开了一种基于自适应模糊神经网络模型CT灌注图像智能融合方法,涉及人工智能、模式识别与医疗工程的交叉领域,可应用于缺血性脑部的诊断。该方法在CT灌注图像中只提取与缺血性脑血管病相关的信息—脑血流量、脑血流容积、对比剂平均通过时间和峰值时间的特征图,经合理的动态模糊神经网络模型训练学习,通过恰当的图像融合方法处理,得到CT解剖图的融合图像,该融合图像可应用于缺血性脑部的诊断,实现了头颅灌注多参数图像综合分析的智能化和自动化。
搜索关键词: 基于 自适应 模糊 神经网络 模型 ct 灌注 图像 智能 融合 方法
【主权项】:
基于自适应模糊神经网络模型CT灌注图像智能融合方法,其特征在于,该方法包含下列步骤:a、在每张CT灌注图像中分别提取脑血流量、脑血流容积、对比剂平均通过时间和峰值时间的四个特征图样本;b、利用神经网络模型分别对脑血流量、脑血流容积、对比剂平均通过时间和峰值时间的四个特征图样本进行训练,神经网络模型采用如下公式:O(k)=ΣjWjo(k)·Xj(k)=f(Sj(k))]]>其中:当对脑血流量进行训练时,为脑血流量特征图的异常值图像面积与CT灌注图像面积的比值;Xj(k)是脑血流量特征图的异常值图像纵坐标为j、衰减系数为k时的误差参数,其中:j=1,2,…,n,n为纵坐标的最大值;Ii(k)是脑血流量特征图的异常值图像横坐标为i、衰减系数为k时的收敛参数,其中:i=1,2,…,m,m为横坐标的最大值;当对脑血流容积进行训练时,为脑血流容积特征图的异常值图像面积与CT灌注图像面积的比值;Xj(k)是脑血流容积特征图的异常值图像纵坐标为j、衰减系数为k时的误差参数,其中:j=1,2,…,n,n为纵坐标的最大值;Ii(k)是脑血流容积特征图的异常值图像横坐标为i、衰减系数为k时的收敛参数,其中:i=1,2,…,m,m为横坐标的最大值;当对对比剂平均通过时间进行训练时,为对比剂平均通过时间特征图的异常值图像面积与CT灌注图像面积的比值;Xj(k)是对比剂平均通过时间特征图的异常值图像纵坐标为j、衰减系数为k时的误差参数,其中:j=1,2,…,n,n纵坐标的最大值;Ii(k)是对比剂平均通过时间特征图的异常值图像横坐标为i、衰减系数为k时的收敛参数,其中:i=1,2,…,m,m为横坐标的最大值;当对峰值时间进行训练时,为峰值时间特征图的异常值图像面积与CT灌注图像面积的比值;Xj(k)是峰值时间特征图的异常值图像纵坐标为j、衰减系数为k时的误差参数,其中:j=1,2,…,n,n为纵坐标的最大值;Ii(k)是峰值时间特征图的异常值图像横坐标为i、衰减系数为k时的收敛参数,其中:i=1,2,…,m,m为横坐标的最大值;采用神经网络模型自带的学习训练方法进行训练,分别获得各CT灌注图像上述四个特征图的异常值图像;c、采用图像融合方法,将各CT灌注图像上述四个特征图的异常值图像融合到CT解剖图上,图像融合方法采用基于代数加权的乘积变化图像融合方法,公式如下:F(i,j)=A(i,j)×B(i,j)/max B(i,j)A(i,j)=f1(i,j)×f2(i,j)×f3(i,j)×f4(i,j)/4其中:F(i,j)为将脑血流量、脑血流容积、对比剂平均通过时间和峰值时间特征图的异常值图像融合到CT解剖图上,得到CT解剖图的融合图像;B(i,j)为CT解剖图,max B(i,j)为CT解剖图上像素的最大值,A(i,j)为脑血流量、脑血流容积、对比剂平均通过时间和峰值时间四个特征图的异常值图像均值,f1(i,j),f2(i,j),f3(i,j)和f4(i,j)分别为脑血流量、脑血流容积、对比剂平均通过时间和峰值时间的特征图的异常值图像;得到CT解剖图的融合图像。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于中国人民解放军广州军区武汉总医院,未经中国人民解放军广州军区武汉总医院许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201310733460.0/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top