[发明专利]一种基于EMD-SVD与MTS的机械磨损件性能评估与预测方法有效

专利信息
申请号: 201310553759.8 申请日: 2013-11-08
公开(公告)号: CN103674511A 公开(公告)日: 2014-03-26
发明(设计)人: 贝继坤;吕琛;王志鹏;王自力 申请(专利权)人: 北京航空航天大学
主分类号: G01M13/00 分类号: G01M13/00
代理公司: 北京永创新实专利事务所 11121 代理人: 祗志洁
地址: 100191*** 国省代码: 北京;11
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明提供了一种基于EMD-SVD与MTS的机械磨损件性能评估与预测方法,属于机械磨损件故障诊断技术领域。首先对采集的被监测对象的信号进行降噪处理,然后对信号进行EMD分解,选取有效的IMF分量和剩余函数组成初始矩阵,对初始矩阵进行奇异值分解,对得到的特征值进行归一化处理得到特征向量;然后利用MTS方法计算马氏距离,并利用田口方法对特征向量进行优化和约减;将马氏距离转化为置信值,通过跟踪置信值的趋势对机械磨损件的性能进行评估,通过被监测对象置信值与工况的关系模型或匹配矩阵,对故障进行预测。本发明避免了现有方法处理非线性非平稳信号易出现错误的问题,适合应用于工业实时监测,减少故障发生几率。
搜索关键词: 一种 基于 emd svd mts 机械 磨损 性能 评估 预测 方法
【主权项】:
一种基于经验模态分解(EMD)‑奇异值分解(SVD)与马田系统(MTS)的机械磨损件性能评估与预测方法,其特征在于,包括如下步骤:步骤一、采集被监测对象信号,对采集的信号进行降噪处理;步骤二、对步骤一得到的信号进行特征提取,具体是:首先,对信号进行经验模态分解,得到n个本征模函数(IMF)分量和剩余函数;其次,选取有效的IMF分量和剩余函数组成初始矩阵A;然后,对初始矩阵A进行奇异值分解,得到信号的特征值;最后,对特征值进行归一化处理,得到信号归一化后的特征向量;步骤三、利用被监测对象正常状态下得到的特征向量构建马氏距离基准空间,然后利用测试数据计算马氏距离;并利用田口方法对特征向量进行优化和约减;步骤四、将马氏距离通过归一化函数转化为置信值,通过跟踪置信值的趋势对机械磨损件的性能进行评估;步骤五、收集被监测对象全寿命的马氏距离、置信值数据及工况信息,建立对应的关系模型或匹配矩阵;通过所建立的关系模型或匹配矩阵,对被监测对象的马氏距离及置信值趋势做出预测,实现对故障的预测;步骤六、实时采集被监测对象信号,将所采集的信号进行降噪处理后,经过步骤二进行特征提取,经过步骤三计算对应的马氏距离,在步骤四中,根据该马氏距离对被监测对象的性能进行评估,在步骤五中对故障进行预测。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于北京航空航天大学,未经北京航空航天大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201310553759.8/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top