[发明专利]基于噪声模型支持向量回归技术的短期风速预报方法有效
申请号: | 201310218957.9 | 申请日: | 2013-06-04 |
公开(公告)号: | CN103279672B | 公开(公告)日: | 2017-02-08 |
发明(设计)人: | 胡清华;张仕光;米据生;谢宗霞 | 申请(专利权)人: | 天津大学 |
主分类号: | G06F19/00 | 分类号: | G06F19/00 |
代理公司: | 天津市北洋有限责任专利代理事务所12201 | 代理人: | 刘国威 |
地址: | 300072*** | 国省代码: | 天津;12 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明涉及天气预报技术领域,为满足实际应用中(如风力发电、农业生产等)对短期风速预报的要求,为达到上述目的,本发明采取的技术方案是,基于噪声影响的支持向量回归技术的短期风速预报方法,包括如下步骤应用Bayesian原理导出基于一般噪声模型的损失函数,给定具有噪声影响的数据集Dl={(x1,y1),...,(xi,yi),...,(xl,yl)},其中xi∈Rn,yi∈R,i=1,...,l,Rn表示n维欧式空间,R表示实数集,l表示样本个数,求取最优损失函数;在此基础上构造基于噪声模型的支持向量回归机,最后利用基于噪声模型的支持向量回归技术得到短期风速预报。本发明主要应用于天气预报。 | ||
搜索关键词: | 基于 噪声 模型 支持 向量 回归 技术 短期 风速 预报 方法 | ||
【主权项】:
一种基于噪声影响的支持向量回归技术的短期风速预报方法,其特征是,包括如下步骤:应用Bayesian原理导出基于一般噪声模型的损失函数,给定具有噪声影响的数据集Dl={(x1,y1),...,(xi,yi),...,(xl,yl)},其中xi∈Rn,yi∈R,i=1,...,l,Rn表示n维欧式空间,R表示实数集,l表示样本个数,求取最优损失函数;在此基础上构造基于噪声模型的支持向量回归机,最后利用基于噪声模型的支持向量回归技术得到短期风速预报;构造基于噪声模型的支持向量回归机具体为:(1)利用增广拉格朗日乘子法(Augmented Lagrange Multiplier method,简记为ALM)求解噪声支持向量回归模型,确定最优参数C、ν、m、n;选取合适的核函数K(·,·);其中m、n为Beta噪声模型的损失函数中的参数,由噪声分布的期望μ和方差σ2确定,即m=[(1‑μ)·μ2/σ2]‑μ,n=[(1‑μ)/μ]·m;(2)构造并求解最优化问题maxα,α*{gDN-SVR=-12Σi,j=1l(αi*-αi)(αj*-αj)K(xi,xj)+Σi=1l(αi*-αi)yi+ClΣi=1l(T(ξi(αi))+T(ξi*(αi*)))}]]>其中C>0是惩罚因子,0<ν<1是常数,s.t.为subject to的缩写,DN‑SVR表示基于噪声模型支持向量回归的对偶问题,表示基于噪声模型支持向量回归对偶问题的目标函数;得到最优解为拉格朗日乘子;(3)构造基于噪声模型支持向量回归的决策函数其中RSV为对应的样本,称为支持向量,Φ:Rn→H为核变换,H为Hilbert空间,K(xi,xj)=(Φ(xi)·Φ(xj)),ω∈Rn为参数向量,(Φ(xi)·Φ(xj))表示H空间中的内积。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于天津大学,未经天津大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201310218957.9/,转载请声明来源钻瓜专利网。
- 同类专利
- 专利分类
G06 计算;推算;计数
G06F 电数字数据处理
G06F19-00 专门适用于特定应用的数字计算或数据处理的设备或方法
G06F19-10 .生物信息学,即计算分子生物学中的遗传或蛋白质相关的数据处理方法或系统
G06F19-12 ..用于系统生物学的建模或仿真,例如:概率模型或动态模型,遗传基因管理网络,蛋白质交互作用网络或新陈代谢作用网络
G06F19-14 ..用于发展或进化的,例如:进化的保存区域决定或进化树结构
G06F19-16 ..用于分子结构的,例如:结构排序,结构或功能关系,蛋白质折叠,结构域拓扑,用结构数据的药靶,涉及二维或三维结构的
G06F19-18 ..用于功能性基因组学或蛋白质组学的,例如:基因型–表型关联,不均衡连接,种群遗传学,结合位置鉴定,变异发生,基因型或染色体组的注释,蛋白质相互作用或蛋白质核酸的相互作用
G06F 电数字数据处理
G06F19-00 专门适用于特定应用的数字计算或数据处理的设备或方法
G06F19-10 .生物信息学,即计算分子生物学中的遗传或蛋白质相关的数据处理方法或系统
G06F19-12 ..用于系统生物学的建模或仿真,例如:概率模型或动态模型,遗传基因管理网络,蛋白质交互作用网络或新陈代谢作用网络
G06F19-14 ..用于发展或进化的,例如:进化的保存区域决定或进化树结构
G06F19-16 ..用于分子结构的,例如:结构排序,结构或功能关系,蛋白质折叠,结构域拓扑,用结构数据的药靶,涉及二维或三维结构的
G06F19-18 ..用于功能性基因组学或蛋白质组学的,例如:基因型–表型关联,不均衡连接,种群遗传学,结合位置鉴定,变异发生,基因型或染色体组的注释,蛋白质相互作用或蛋白质核酸的相互作用