[发明专利]一种基于自适应训练库的块域人脸超分辨率重建方法有效

专利信息
申请号: 201310027625.2 申请日: 2013-01-24
公开(公告)号: CN103049897A 公开(公告)日: 2013-04-17
发明(设计)人: 胡瑞敏;陈亮;韩镇;沈亚君;周治龙;胡孟凌;涂小萌;夏洋;卢涛;江俊君 申请(专利权)人: 武汉大学
主分类号: G06T5/50 分类号: G06T5/50
代理公司: 武汉科皓知识产权代理事务所(特殊普通合伙) 42222 代理人: 严彦
地址: 430072 湖*** 国省代码: 湖北;42
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明提供了一种基于自适应训练库的块域人脸超分辨率重建方法。此种新的基于学习的方法,首先将高低分辨率训练图像对统一分块,在以位置为单位的块集合内部进行聚类处理。然后对输入图像的每一个块,在对应位置训练块集上做出自适应选择,根据近邻选择和自适应类别选择,筛选出自适应的训练集,然后在低分辨率块通过在该自适应训练集中做主成分分析系数投影恢复高频细节。以此解决或减轻噪点严重的人脸图像(如监控图像)超分辨率恢复中的噪声问题。
搜索关键词: 一种 基于 自适应 训练 块域人脸超 分辨率 重建 方法
【主权项】:
一种基于自适应训练库的块域人脸超分辨率重建方法,其特征在于,包括以下步骤: 步骤1,获得高分辨率人脸图像库Ys和相应的低分辨率人脸图像库Xs,高分辨率人脸图像库Ys中所有高分辨率人脸图像位置对齐,低分辨率人脸图像库Xs中的低分辨率人脸图像与高分辨率人脸图像库Ys中的高分辨率人脸图像一一对应; 步骤2,将高分辨率人脸图像库Ys中的每幅高分辨率人脸图像和低分辨率人脸图像库Xs中的每幅低分辨率人脸图像分别进行重叠分块;在任一幅图像中,每个图像块所在的位置表示为位置标号(i,j),i、j分别表示图像块所在位置的行和列; 步骤3,将低分辨率人脸图像库Xs中的所有低分辨率人脸图像处于位置标号为(i,j)的图像块进行聚类处理; 步骤4,对待处理低分辨率人脸图像x与高分辨率人脸图像库Ys中高分辨率人脸图像的位置对齐,并用步骤2中进行重叠分块的方法对对齐后的待处理低分辨率人脸图像x分块,用xij代表待处理低分辨率人脸图像x处于位置标号为(i,j)的图像块; 步骤5,对图像块xij,设在低分辨率人脸图像库Xs中的所有低分辨率人脸图像处于位置标号为(i,j)的图像块构成集合S,用类别选择和近邻筛选分别从集合S中取得对应集合A和B,将集合A和B取并集得到图像块xij的低分辨率最优相关训练集C,得到与低分辨率最优相关训练集内图像块C对应的高分辨率最优相关训练集Ch; 步骤6,形成图像块xij的自适应训练库,包括对低分辨率最优相关训练集C做主成分分析,求得最优低分辨率图像基;对高分辨率最优相关训练集Ch做主成分分析,求得最优高分辨率图像基; 步骤7,基于最优低分辨率图像基和最优高分辨率图像基对图像块xij进行块域重建,得到相应高分辨率重建块yij; 步骤8,将各位置的高分辨率重建块拼接组合成为重建高分辨率图像yt。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于武汉大学,未经武汉大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201310027625.2/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top