[发明专利]高速切削加工中工件表面粗糙度的预测方法有效
申请号: | 201210426876.3 | 申请日: | 2012-10-31 |
公开(公告)号: | CN102880771A | 公开(公告)日: | 2013-01-16 |
发明(设计)人: | 孙明伟;龚敏庆;周胜;黄敏;金明仲;罗钢 | 申请(专利权)人: | 贵州大学 |
主分类号: | G06F17/50 | 分类号: | G06F17/50 |
代理公司: | 贵阳中新专利商标事务所 52100 | 代理人: | 李亮;程新敏 |
地址: | 550025 贵州省贵*** | 国省代码: | 贵州;52 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 本发明公开了一种高速切削加工中工件表面粗糙度的预测方法,包括以下步骤,步骤一、确定高速切削加工中所需测量的影响加工工件表面粗糙度的切削参数,作为RBF的输入和输出;并测量收集相应样本数据作为网络的学习样本和训练样本;步骤二、建立RBF神经网络模型,利用相应的样本数据对模型进行学习训练;步骤三、根据松弛误差公式,利用测试组对步骤二训练后的模型进行测试,选择出符合精度要求的模型,从而提高模型的预测精度,并减小预测误差的波动,以提高模型的拟合预测能力;利用精度满足要求的模型对高速切削加工中工件表面粗糙度进行预测。 | ||
搜索关键词: | 高速 切削 加工 工件 表面 粗糙 预测 方法 | ||
【主权项】:
一种高速切削加工中工件表面粗糙度的预测方法,其特征在于:包括以下步骤,步骤一、确定高速切削加工中所需测量的影响加工工件表面粗糙度的切削参数,作为RBF的输入和输出;并测量收集相应样本数据作为网络的学习样本和训练样本;步骤二、建立RBF神经网络模型,利用相应的样本数据对模型进行学习训练;步骤三、根据松弛误差公式,利用测试组对步骤二训练后的模型进行测试,选择出符合精度要求的模型,从而提高模型的预测精度,并减小预测误差的波动,以提高模型的拟合预测能力;利用精度满足要求的模型对高速切削加工中工件表面粗糙度进行预测。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于贵州大学,未经贵州大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201210426876.3/,转载请声明来源钻瓜专利网。