[发明专利]一种基于空间与光谱信息的高光谱自动云检测方法有效

专利信息
申请号: 201210249205.4 申请日: 2012-07-18
公开(公告)号: CN102799903A 公开(公告)日: 2012-11-28
发明(设计)人: 马雷;张秀玲;田原;郭建恩;江碧涛 申请(专利权)人: 中国科学院自动化研究所;北京市遥感信息研究所
主分类号: G06K9/66 分类号: G06K9/66
代理公司: 中科专利商标代理有限责任公司 11021 代理人: 宋焰琴
地址: 100190 *** 国省代码: 北京;11
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明公开了一种基于空间与光谱信息的高光谱自动云检测方法,可用于航天、航空高光谱遥感图像的自动云判,减少高光谱遥感数据的存储成本,节省传输带宽。该方法包括以下步骤:根据云、雪和水等光谱样本进行预处理和波段选择,之后进行特征提取;采用分类器进行样本训练,得到云的光谱分类模型;在高光谱图像云检测阶段,通过与训练阶段相同的预处理、波段选择和特征提取,对高光谱每个像元进行分类;考察像元与邻域像元的一致性,最终确定该像元是否为有云像元,最后统计有云像元所占比例,给出云判结果。本发明结合图像分割、目标分类识别和机器学习技术,解决了高光谱云判问题,避免了仅利用纹理信息或仅利用光谱信息而造成的低检测率的缺陷。
搜索关键词: 一种 基于 空间 光谱 信息 自动 检测 方法
【主权项】:
一种基于空间与光谱信息的高光谱自动云检测方法,其特征在于,该方法包括以下步骤:步骤S1,将云、雪和水的光谱样本作为训练样本,对所述训练样本依次进行预处理以过滤噪声、波段选择以剔除掉影响光谱发射率的波段和光谱描述特征提取;步骤S2,根据提取得到的训练样本的光谱描述特征进行有监督训练,根据学习的结果得到云光谱分类模型;步骤S3,对输入的待检测的高光谱遥感图像也进行与所述训练样本同样的预处理、波段选择与光谱描述特征提取处理;步骤S4,根据所述步骤S2学习得到的云光谱分类模型,对所述高光谱遥感图像中的每一个像元进行分类,以初步判断所述高光谱遥感图像中的每一个像元是否含有云;步骤S5,利用所述步骤S4的初步分类结果以及空间一致性过确定所述高光谱遥感图像中有云的像元;步骤S6,统计所述高光谱遥感图像中有云像元占所述高光谱遥感图像所有像元的比例,如果该比例大于一预定阈值,则判定该高光谱遥感图像为有云图像,即得到高光谱遥感图像的云判结果。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于中国科学院自动化研究所;北京市遥感信息研究所,未经中国科学院自动化研究所;北京市遥感信息研究所许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201210249205.4/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top