[发明专利]基于2阶不可交换误差补偿模型的圆锥算法有效

专利信息
申请号: 201110308099.8 申请日: 2011-10-11
公开(公告)号: CN102506862A 公开(公告)日: 2012-06-20
发明(设计)人: 黄磊;刘建业;曾庆化;赖际舟;李荣冰;宋国安;顾珊珊 申请(专利权)人: 南京航空航天大学
主分类号: G01C21/24 分类号: G01C21/24
代理公司: 南京经纬专利商标代理有限公司 32200 代理人: 许方
地址: 210016 江*** 国省代码: 江苏;32
权利要求书: 查看更多 说明书: 查看更多
摘要: 发明公开一种基于2阶不可交换误差补偿模型的圆锥算法,属于捷联惯性导航领域,步骤为:在单位算法更新周期内,对陀螺仪的输出采样3次得到采样值;求出整个算法更新周期内的角增量;计算采样值的各1次叉乘项和各2次叉乘项;从陀螺仪的3次采样值出发,利用Bortz方程的旋转矢量1阶不可交换误差补偿模型对角增量进行1阶补偿:利用Bortz方程的2阶不可交换误差补偿模型对前述步骤求得的旋转矢量再进行2阶不可交换误差补偿;把经1阶补偿和2阶补偿后的旋转矢量代替角增量,代入捷联求姿算法,求取机体的飞行姿态。此算法可在不增加采样频率和更新周期的前提下,有效减小传统圆锥算法中的截断误差,提高精度。
搜索关键词: 基于 不可 交换 误差 补偿 模型 圆锥 算法
【主权项】:
一种基于2阶不可交换误差补偿模型的圆锥算法,其特征在于包括如下步骤:(1)在单位算法更新周期内,对陀螺仪的输出采样3次得到采样值Δθ1,Δθ2,Δθ3;(2)根据下式求出整个算法更新周期内的角增量Δθ:Δθ=Δθ1+Δθ2+Δθ3                  (1)(3)计算采样值的各1次叉乘项和各2次叉乘项,其中,采样值的1次叉乘项包含以下3项:Δθ1×Δθ3,Δθ1×Δθ2,Δθ2×Δθ3  (2)采样值的2次叉乘项包含以下3项:Δθ1×(Δθ1×Δθ2),Δθ3×(Δθ1×Δθ2),Δθ1×(Δθ1×Δθ3)   (3)(4)从陀螺仪的3次采样值出发,利用Bortz方程的旋转矢量1阶不可交换误差补偿模型对角增量Δθ进行1阶补偿:所述Bortz关于1阶不可交换误差补偿模型为: Φ · = ω + 1 2 Φ × ω - - - ( 4 ) 其中的Φ代表更新周期内的旋转矢量,ω代表机体的角速度,两边积分得: Φ = Δθ + 1 2 t t + h Φ × ωdt - - - ( 5 ) 式(5)通过变换最终得到下式,其中δΦ′代表1阶不可交换误差补偿: Φ = Δθ + δ Φ δ Φ = 9 20 Δθ 1 × Δθ 3 + 27 40 Δθ 2 × ( Δθ 3 - Δθ 1 ) - - - ( 6 ) (5)利用Bortz方程的2阶不可交换误差补偿模型对步骤(4)求得的旋转矢量再进行2阶不可交换误差补偿:所述Bortz关于2阶不可交换误差补偿模型为: Φ · = ω + 1 2 Φ × ω + 1 12 Φ × ( Φ × ω ) . . . - - - ( 7 ) 根据该模型进一步补偿不可交换性误差的方法为: Φ = Δθ + δ Φ + δ Φ δΦ = l 1 Δ θ 1 × ( Δθ 1 × Δθ 2 ) + l 2 Δθ 3 × ( Δθ 1 × Δθ 2 ) + l 3 Δθ 1 × ( Δθ 1 × Δθ 3 ) - - - ( 8 ) 其中,δΦ″即是圆锥算法中的旋转矢量对不可交换性误差的2阶补偿;(6)把经1阶补偿和2阶补偿后的旋转矢量Φ代替角增量,代入捷联求姿算法,求取机体的飞行姿态。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于南京航空航天大学,未经南京航空航天大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/patent/201110308099.8/,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top