[发明专利]基于二维经验模态分解和小波降噪的多分组图像分类方法有效
申请号: | 201010209877.3 | 申请日: | 2010-06-25 |
公开(公告)号: | CN101847210A | 公开(公告)日: | 2010-09-29 |
发明(设计)人: | 沈毅;贺智;张淼 | 申请(专利权)人: | 哈尔滨工业大学 |
主分类号: | G06K9/62 | 分类号: | G06K9/62 |
代理公司: | 哈尔滨市松花江专利商标事务所 23109 | 代理人: | 张果瑞 |
地址: | 150001 黑龙*** | 国省代码: | 黑龙江;23 |
权利要求书: | 查看更多 | 说明书: | 查看更多 |
摘要: | 基于二维经验模态分解和小波降噪的多分组图像分类方法,属于图像处理领域,本发明为解决传统分类方法对图像本质特征利用不充分,分类精度低的问题,本发明包括如下步骤:一:对多分组图像中各波段分别进行二维经验模态分解,得到前K个二维分量IMF和1个残差;二:对前K个二维分量IMF求和作为特征值,小波降噪后获取降噪后特征值;三:多个多分组图像的降噪后特征值按比例任意选取作为支持向量机的训练样本和测试样本,对训练样本进行支持向量机参数训练,再进行归属判定,形成多个支持向量机子分类器;四:利用多个支持向量机子分类器构建基于一对一策略的多分类器,并依据决策函数对测试样本的归属类别做出决策,完成多分组图像的分类。 | ||
搜索关键词: | 基于 二维 经验 分解 小波降噪 分组 图像 分类 方法 | ||
【主权项】:
基于二维经验模态分解和小波降噪的多分组图像分类方法,其特征在于,它包括如下步骤:步骤一:对多分组图像中各波段分别进行二维经验模态分解,得到前K个频率由高到低依次递减的二维本征模态函数分量IMF和1个残差;步骤二:对所述前K个频率由高到低依次递减的二维本征模态函数分量IMF求和作为该多分组图像的特征值,并对所述特征值选取小波函数降噪,获取降噪后特征值;步骤三:多个多分组图像的降噪后特征值按比例任意选取作为支持向量机的训练样本和测试样本,对训练样本进行支持向量机参数训练,再利用参数已训练完毕的支持向量机对测试样本所对应像素的类别进行归属判定,形成多个支持向量机子分类器;步骤四:利用多个支持向量机子分类器构建基于一对一策略的多分类器,并依据决策函数对测试样本的归属类别做出决策,完成多分组图像的分类。
下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于哈尔滨工业大学,未经哈尔滨工业大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/patent/201010209877.3/,转载请声明来源钻瓜专利网。
- 上一篇:网络交易的商品付款及配送装置
- 下一篇:概预算编制自动套用定额的方法