[发明专利]一种用户异常用电检测方法及系统在审

专利信息
申请号: 202110721542.8 申请日: 2021-06-28
公开(公告)号: CN113496440A 公开(公告)日: 2021-10-12
发明(设计)人: 张铭;吕征宇;周亮;茹蔚康;李文韬;阚竟生;殷展;杜仁平;汤婵娟;毛峻青;赵越;谢芳;孙慧敏;金仕;陆裔哲;徐晶晶 申请(专利权)人: 国网上海市电力公司;国网上海电力设计有限公司
主分类号: G06Q50/06 分类号: G06Q50/06;G06K9/62
代理公司: 上海科盛知识产权代理有限公司 31225 代理人: 翁惠瑜
地址: 200122 上海市浦*** 国省代码: 上海;31
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 一种 用户 异常 用电 检测 方法 系统
【说明书】:

本发明涉及一种用户异常用电检测方法及系统,方法包括:1)采集若干用户的用电量时序数据,并进行预处理;2)对用电量时序数据进行解析,获得解析结果;3)根据用电量时序数据的原始值以及解析结果,通过孤立森林算法进行迭代计算,每次迭代对应获得若干组异常检测结果,每组异常检测结果包含所有用户的用电异常判定结果,获取若干组异常检测结果的结果交叉数量;4)判断最新获取的结果交叉数量与上一次获取的结果交叉数量的差值是否小于临界值,若是则判定最新的交叉的用电异常判定结果对应的用户用电异常,否则重复步骤3)。与现有技术相比,本发明具有客观性强、准确性好等优点。

技术领域

本发明涉及一种用电信息采集技术,尤其是涉及一种用户异常用电检测方法及系统。

背景技术

由于低压客户群体数量庞大,且变化频繁,目前台区线损管理中普遍存在户变关系不清、抄表质量不佳、窃电、计量故障等管理原因导致的线损异常。近年来,围绕用电侧的异常模式检测问题,发展了基于统计、基于距离和基于学习的三大类技术方法。从数据的角度看,并借鉴机器学习领域的常用概念,可以将这些方法分成两大类:有监督学习和无监督学习。有监督学习方法通常需要足够的带标签的训练样本,这意味着用电数据中需要包含用户的类型信息,即该用户是否为异常用户。这样的数据需要人类专家鉴定,并且无法形成较大的规模。无监督的方法不需要知道用户本身的类型信息,它能够从大量的用电数据中学习到特定的知识,并用于寻找异常的用电模式。随着智能电表的普及和配用电大数据的发展,电网的用电侧数据逐步表现出海量数据和高复杂度的特征,传统的用电异常检测模式已经难以满足现有的要求,而近年来被广泛应用于异常检测的神经网络和机器学习的方法,绝大多数对于训练样本的需求较高,无法很好地应用于缺少样本标签的用电数据集上。

现有技术也给出了一些解决方案,中国专利CN201810793660.8提出了一种基于孤立森林算法的用电数据异常检测模型,包括特征提取模块、特征降维模块、孤立森林计算模块、构建专家样本模块和二次训练模块,特征提取模块从原始数据集中提取用户的用电数据的时间序列作为初始特征集,然后对初始特征集进行无量纲化和特征选择处理;特征降维模块采用主成分分析法和自编码网络法对初始特征集进行降维得到有效特征集;孤立森林计算模块采用孤立森林算法计算出每个用户的异常分数以判定用户数据有无异常,该专利基于孤立森林算法的用电数据异常检测模型,是一种无监督的用电数据异常检测模型,不仅能够快速地处理大量的数据,而且能够适应缺乏训练样本的情况,能够更好地满足于电力部门的实践需求。

但该专利存在以下问题:

孤立森林算法是一种无监督学习算法,学习过程具有一定的随机性,判别用户用电是否异常的一个关键点是临界值的选取,临界值取值越接近1,被认为是用电异常的用户数量越少,这意味着检测结果的准确率会提高,但同时会导致用电异常的用户的漏报率上升,用电异常的用户被混淆在用电正常的用户中,因此该专利受孤立森林算法的随机性以及人为确定临界值的主观因素的影响较大,结果的可靠性和准确性不高。

发明内容

本发明的目的就是为了克服上述现有技术存在的缺陷而提供一种用户异常用电检测方法及系统,客观性好,准确性高。

本发明的目的可以通过以下技术方案来实现:

一种用户异常用电检测方法,包括:

1)采集若干用户的用电量时序数据,并进行预处理;

2)对用电量时序数据进行解析,获得解析结果;

3)根据用电量时序数据的原始值以及解析结果,通过孤立森林算法进行迭代计算,每次迭代对应获得若干组异常检测结果,每组异常检测结果包含所有用户的用电异常判定结果,获取若干组异常检测结果的结果交叉数量;

4)判断最新获取的结果交叉数量与上一次获取的结果交叉数量的差值是否小于临界值,若是则判定最新的交叉的用电异常判定结果对应的用户用电异常,否则重复步骤3)。

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于国网上海市电力公司;国网上海电力设计有限公司,未经国网上海市电力公司;国网上海电力设计有限公司许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/202110721542.8/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top