[发明专利]基于双重注意力机制特征提取的深度高斯混合模型颅骨配准方法在审
| 申请号: | 202110032732.9 | 申请日: | 2021-01-11 |
| 公开(公告)号: | CN112801945A | 公开(公告)日: | 2021-05-14 |
| 发明(设计)人: | 耿国华;寇姣姣;张海波;海琳琦;鱼跃华;刘一萍 | 申请(专利权)人: | 西北大学 |
| 主分类号: | G06T7/00 | 分类号: | G06T7/00;G06T7/33;G06T5/50;G06N3/02 |
| 代理公司: | 西安众和至成知识产权代理事务所(普通合伙) 61249 | 代理人: | 强宏超 |
| 地址: | 710069 *** | 国省代码: | 陕西;61 |
| 权利要求书: | 查看更多 | 说明书: | 查看更多 |
| 摘要: | |||
| 搜索关键词: | 基于 双重 注意力 机制 特征 提取 深度 混合 模型 颅骨 方法 | ||
本发明公开一种基于双重注意力机制特征提取的深度高斯混合模型颅骨配准方法,包括:步骤1,通过三维扫描仪获取三维点云模型;步骤2,将三维点云模型处理为只含顶点信息的1700个点的颅骨模型;步骤3,将点云模型输入到卷积神经网络中提取特征;步骤4,计算特征与高斯混合模型参数之间的对应关系矩阵得到匹配参数;步骤5,从匹配的参数中恢复最优变换;本发明克服了现有局部配准方法若无良好的初始化导致遇到较大变换匹配失败问题,且克服了现有全局配准方法速度慢且效率低问题,有效地建立了点到模型之间的数据关联以实现点云高效配准。
技术领域
本发明属于三维点云模型配准相关技术领域,涉及一种基于双重注意力机制特征提取的深度高斯混合模型颅骨配准方法。
背景技术
随着三维获取技术的快速发展,获取到的三维点云数据从几何角度更好地再现了真实物体的形状信息,目前在逆向工程、计算机视觉、无人驾驶等实际应用领域中受到了广泛推广。三维点云配准是后续复原关键步骤之一,目的在于通过一个最佳变换矩阵估计,将位于不同坐标系的点云统一变换到同一坐标系下。
由于获取到的点云具有无序、结构不规则特性,已有方法将其转换为规则的体素网格便于处理,但是,会丢失一些重要几何信息。深度学习近些年得到了人们的普遍关注,利用深度学习直接处理点云会保留原始点云的关键信息。
注意力机制常用于二维图像分割、分类等应用领域中。在二维图像分割中,通过引入注意力机制来分别捕捉不同维度上的视觉特征关联,它更关注于找到输入数据中显著的与当前输出相关的有用信息,从而提高输出质量。该方法在二维图像上应用很广泛,但对于三维模型点云配准前期特征提取阶段应用却很少有相关研究。
深度高斯混合模型配准将点云配准问题定义为求两个高斯混合模型概率分布的KL散度最小值问题。主要思想是提取特征点与高斯混合模型参数之间的对应关系矩阵,矩阵中的元素代表某点属于高斯混合模型成分的概率,概率越大表示两者关联性越大,从而得到匹配参数,根据匹配参数恢复最优变换。
发明内容
针对现有技术的缺点或不足,本发明的目的在于提供一种基于双重注意力机制特征提取的深度高斯混合模型颅骨配准方法,学习到图片中更精细的特征并且减少运行的计算量,提高图像匹配精确度,提升算法运行速度,使秦腔脸谱特征识别更快、更准、效果更好。
为实现上述目的,本发明所采用的技术方案是:
基于双重注意力机制特征提取的深度高斯混合模型颅骨配准方法,其特征在于,包括以下步骤:
步骤1,通过三维扫描仪获取三维点云颅骨模型;
步骤2,将三维点云模型处理为只含顶点信息的1700个点的颅骨模型;
步骤3,将点云模型输入到卷积神经网络PointNet中,编码与解码阶段采用残差块+双重注意力机制通过对输入点云赋予不同权重提取关键特征,减少模型存储与计算开销;
残差网络由多个残差块串联构成,直接将输入信息跳跃连接到输出,注意力机制沿通道与空间两个方向分解,组合成双重注意力机制;
通道注意力机制采用平均池化和最大池化融合部分特征信息,生成平均池化特征和最大池化特征
通过式(1)将两特征传播到只有一个隐藏层的多层感知机生成通道特征映射Mc∈RC×1×1,最后,使用逐元素求和得到融合后的特征:
式(1)中σ是sigmoid激活函数,W0和W1代表多层感知机权重,W0∈RC/r×C,W1∈RC×C/r,r代表减速率;
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于西北大学,未经西北大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/202110032732.9/2.html,转载请声明来源钻瓜专利网。
- 上一篇:智能定位器的通信控制方法和智能定位器
- 下一篇:双模系统之间的数据通信方法





