[发明专利]一种基于随机游走度惩罚机制的社交网络好友预测方法在审
| 申请号: | 202010893847.2 | 申请日: | 2020-08-31 |
| 公开(公告)号: | CN112132326A | 公开(公告)日: | 2020-12-25 |
| 发明(设计)人: | 杨旭华;马钢峰;许营坤;叶蕾 | 申请(专利权)人: | 浙江工业大学 |
| 主分类号: | G06Q10/04 | 分类号: | G06Q10/04;G06Q50/00;G06K9/62;G06F16/9536 |
| 代理公司: | 杭州斯可睿专利事务所有限公司 33241 | 代理人: | 王利强 |
| 地址: | 310014 浙江省*** | 国省代码: | 浙江;33 |
| 权利要求书: | 查看更多 | 说明书: | 查看更多 |
| 摘要: | |||
| 搜索关键词: | 一种 基于 随机 游走 惩罚 机制 社交 网络 好友 预测 方法 | ||
1.一种基于随机游走度惩罚机制的社交网络好友预测方法,其特征在于:包括如下步骤:
步骤一:根据社交网络用户数据建立社交网络G=(V,E),其中,V={v1,v2,...vN}表示节点集合,每个节点表示一个用户,E为连边集合,N表示用户数,di表示节点i的度,即用户i直接相连的好友数;
步骤二:任选一个节点vi,计算vi随机游走到任意邻居节点vj的概率
其中,λ是一个可调参数,Γi表示节点i的邻居节点集合。从节点vi出发,按概率Pwalk随机游走R步,得到随机游走节点序列
步骤三:在随机游走节点序列L中每次选取1个节点,作为训练节点k,取节点k在随机游走序列L中至多前s个与后s个节点,作为训练节点k的正样本,其中s为可调参数,按照此方法得到L中每个节点的正样本;
步骤四:计算负样本的采样概率
其中负采样集合Nneg为不在随机游走序列L下的节点集合,u为节点的嵌入向量表示,通过pij从Nneg中采集节点,作为训练节点k的负样本;
步骤五:计算损失函数其中uk表示训练节点k的嵌入向量表示,up表示k的正样本,uw表示k的负样本,σ表示sigmoid函数;
步骤六:重复步骤二到步骤五,直到损失函数收敛则算法中止,得到所有节点的嵌入向量u,针对任意无连边节点对,计算相应的嵌入向量内积,按照降序排列,取前B个内积最大节点对,所对应的用户对即为相互推荐的好友,B≤Y,其中Y表示网络中无连边节点对的数量。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于浙江工业大学,未经浙江工业大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/202010893847.2/1.html,转载请声明来源钻瓜专利网。
- 同类专利
- 专利分类
G06Q 专门适用于行政、商业、金融、管理、监督或预测目的的数据处理系统或方法;其他类目不包含的专门适用于行政、商业、金融、管理、监督或预测目的的处理系统或方法
G06Q10-00 行政;管理
G06Q10-02 .预定,例如用于门票、服务或事件的
G06Q10-04 .预测或优化,例如线性规划、“旅行商问题”或“下料问题”
G06Q10-06 .资源、工作流、人员或项目管理,例如组织、规划、调度或分配时间、人员或机器资源;企业规划;组织模型
G06Q10-08 .物流,例如仓储、装货、配送或运输;存货或库存管理,例如订货、采购或平衡订单
G06Q10-10 .办公自动化,例如电子邮件或群件的计算机辅助管理





