[发明专利]一种基于深度学习的葡萄胎切片图像处理方法及装置在审

专利信息
申请号: 202010828696.2 申请日: 2020-08-17
公开(公告)号: CN112070725A 公开(公告)日: 2020-12-11
发明(设计)人: 师丽;朱承泽;王松伟;王治忠 申请(专利权)人: 清华大学
主分类号: G06T7/00 分类号: G06T7/00;G06T7/10;G06T5/50;G06N3/04;G06N3/08
代理公司: 成都弘毅天承知识产权代理有限公司 51230 代理人: 谢建
地址: 100084*** 国省代码: 北京;11
权利要求书: 查看更多 说明书: 查看更多
摘要:
搜索关键词: 一种 基于 深度 学习 葡萄胎 切片 图像 处理 方法 装置
【说明书】:

本发明公开了一种基于深度学习的葡萄胎图像处理方法及装置,属于医学影像技术领域中葡萄胎的医学影像检测,用于解决现有技术中葡萄胎临床诊断检测的效率低的问题。本发明通过采集显微镜下的葡萄胎切片扫描图,并将葡萄胎切片扫描图输入绒毛网络、增生网络,得到葡萄胎切片扫描图的切片绒毛标签图、切片增生标签图,最终得到切片增生分布图。本发明通过绒毛网络、增生网络可对绒毛、增生两种不同的葡萄胎病理特征进行图像处理,得到切片增生分布图,分布图将可视化地显示给临床医生,以直观获得切片增生区域分布情况。

技术领域

本发明属于医学影像技术领域,涉及一种葡萄胎的医学影像检测,尤其涉及一种用深度学习的方法对葡萄胎切片图像处理的方法。

背景技术

葡萄胎(HM)是指妊娠后胎盘形成的形如葡萄串的水泡状胎块。而葡萄胎婴儿多死亡或形成畸胎,极少有足月婴诞生。在一般情况下,有10%到20%的葡萄胎会发展演变成恶性的葡萄胎以及绒毛膜癌,这类癌症会通过血型团泊进行转移,如果治疗不及时就会给患者带来生命威胁。因此,葡萄胎的早期病理诊断对每位患病孕妇都有重要意义。

现有技术中,对葡萄胎的检测、筛查主要有两种方式,第一种是通过显微镜人工观察切片,第二种是通过检测与葡萄胎相关的基因。

第一种方式中,一般病理医师使用5*10倍与10*10倍的显微镜对病人多个切片进行观察,然后根据经验和切片组织细胞的形态进行综合诊断。葡萄胎诊断主要通过观察切片中的绒毛特征进行诊断,切片病理特征主要为绒毛滋养细胞增生和绒毛内部间质水肿。

妇科医院的病理科医生每天需要花费大量的时间去诊断类似葡萄胎这类相较于肿瘤危险系数较低的病症,而这些患者中大多数未患病,但这些需要占用病理科医师大量的工作时间。

但是,目前国内病理科医师人数在1.5w左右,人才缺口较大,检测的效率较低;另外,临床葡萄胎诊断由于主要由医师人工筛查切片,因此准确率很难保证,尤其对于12周以前的葡萄胎,由于葡萄胎未到成熟期,病灶发育不完全,组织形态与正常葡萄胎切片较为相似,不易区分,造成临床诊断准确率极低,不到50%。

第二种方式中,申请号为201310027715.1、名称为用于检测NLRP7基因的基因芯片、检测试剂和试剂盒的发明专利就公开了通过检测与葡萄胎相关的NLRP7基因SNP,实现对于葡萄胎的临床诊断和高危人群早期筛查、早期预防干预具有重要的意义,可广泛用于临床高效筛查葡萄胎高危人群。该发明专利构建了筛查与葡萄胎相关的NLRP7基因多态性高危人群的基因芯片检测系统,基因芯片包括固相载体和合成在该载体上的寡核苷酸探针,检测试剂包括基因芯片和18对用于扩增样本中各SNPs的PCR引物,试剂盒包括检测试剂、一阴性对照样本和一阳性对照样本。该发明专利可快速、准确检测临床样本中的NLRP7基因各个相关SNPs位点,对于葡萄胎的临床诊断和高危人群早期筛查、早期预防干预具有重要的意义。

虽然,通过检测基因筛查葡萄胎固然有其存在的必要性,但是通过检测NLRP7基因对葡萄胎进行筛查一是增加了试剂盒检测步骤,整个检测周期会比较长,另外就是会涉及到芯片生产、试剂以及试剂盒的生产,筛查成本大幅上升,在葡萄胎临床诊断中应用范围非常受限,不易推广、应用。

基于上述病理科医师人数少、医师人工筛查切片效率低、医师人工筛查切片精度低以及基因检测筛查成本高、基因检测筛查周期长的现状,有必要研发一整套从显微镜自动获取图像到生成水肿、增生等病理特征分布图的方法和装置,从而辅助临床医生更高效的筛查病例。

临床病理科医生主要通过绒毛间质水肿、绒毛边缘滋养细胞弥漫性增生等病理特征和病人绝经时长、妊娠史等信息综合判断是否为葡萄胎病症,其中绒毛间质水肿这一病理特征是较为关键的诊断依据。

发明内容

本发明的目的在于:提供一种基于深度学习的葡萄胎切片图像处理方法及装置,通过获得葡萄胎的绒毛、增生分布情况,以解决现有技术中通过人工观察切片组织的病理特征致使的葡萄胎临床诊断检测的效率低的问题。

下载完整专利技术内容需要扣除积分,VIP会员可以免费下载。

该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于清华大学,未经清华大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服

本文链接:http://www.vipzhuanli.com/pat/books/202010828696.2/2.html,转载请声明来源钻瓜专利网。

×

专利文献下载

说明:

1、专利原文基于中国国家知识产权局专利说明书;

2、支持发明专利 、实用新型专利、外观设计专利(升级中);

3、专利数据每周两次同步更新,支持Adobe PDF格式;

4、内容包括专利技术的结构示意图流程工艺图技术构造图

5、已全新升级为极速版,下载速度显著提升!欢迎使用!

请您登陆后,进行下载,点击【登陆】 【注册】

关于我们 寻求报道 投稿须知 广告合作 版权声明 网站地图 友情链接 企业标识 联系我们

钻瓜专利网在线咨询

周一至周五 9:00-18:00

咨询在线客服咨询在线客服
tel code back_top