[发明专利]一种基于深度学习的视网膜血管图像分割方法在审
| 申请号: | 202010719019.7 | 申请日: | 2020-07-23 |
| 公开(公告)号: | CN111862056A | 公开(公告)日: | 2020-10-30 |
| 发明(设计)人: | 赵晓芳;陈雪芳;林盛鑫;梁桢灏 | 申请(专利权)人: | 东莞理工学院 |
| 主分类号: | G06T7/00 | 分类号: | G06T7/00;G06T7/10 |
| 代理公司: | 北京汇彩知识产权代理有限公司 11563 | 代理人: | 王键 |
| 地址: | 523000 广东省*** | 国省代码: | 广东;44 |
| 权利要求书: | 查看更多 | 说明书: | 查看更多 |
| 摘要: | |||
| 搜索关键词: | 一种 基于 深度 学习 视网膜 血管 图像 分割 方法 | ||
1.一种基于深度学习的视网膜血管图像分割方法,其特征在于包含以下步骤:
步骤一:眼底图像增强,对眼底图像进行对比度增强以突出视网膜血管细节;
步骤二:训练集数据扩增,对图像增强后的眼底图进行随机旋转,并随机分割出一系列48x48的小方块作为数据集;
步骤三:构建密集连接卷积块,并采用密集连接卷积块取代传统卷积块实现特征重用并增强特征提取能力;
步骤四:构建注意力机制模块,通过对特征图进行自适应调整,使重要特征突出显现以抑制无效特征;
步骤五:搭建模型,搭建DA-Unet网络,并使用处理好的数据集进行训练、调参,得到最佳分割模型并保存;
步骤六:实际分割,利用滑动窗口把需要分割视网膜血管的眼底图像分割为48x48的子块图像输入DA-Uet网络中进行分割,输出分割后的子块图像结果,再对分割后的小方块图像拼接完整视网膜血管分割图像。
2.按照权利要求1所述的一种基于深度学习的视网膜血管图像分割方法,其特征在于:所述步骤一具体为对训练集的眼底图像提取对比度较高的绿色通道,归一化处理;再使用自适应直方图均衡化,对图像中每一个像素计算邻域直方图得到直方图变换函数,使用直方图变换函数对图像进行均衡化,提高视网膜血管与背景对比度;最后使用gamma矫正,对图像进行非线性操作,使矫正后图像像素与矫正前呈指数关系,矫正眼底图像因光线不均导致的漂白或过暗。
3.按照权利要求1所述的一种基于深度学习的视网膜血管图像分割方法,其特征在于:所述步骤二具体为将增强后的眼底图像,进行边缘填充得到一张正方形图像,沿着正方形图像的中心坐标旋转一个随机角度并保存,按照此方法把原有数据集扩充5倍;然后构造生成器,生成器每次训练时在数据集中任意图片上的任意坐标采集一个48*48的子块作为训练集图像。
4.按照权利要求1所述的一种基于深度学习的视网膜血管图像分割方法,其特征在于:所述步骤三具体为
首先构建密集连接子块,密集连接子块先通过1x1的卷积层将输入信息进行特征整合,限制输入特征层使其不会过宽,再通过3x3的卷积层进行特征提取,提取的特征图通过归一化层和ReLU激活函数层将特征进行非线性划分提取;
然后将4层密集连接子块搭建为密集连接卷积块,每个密集连接子块卷积得到的特征图都与输入相叠加后作为输出,其数学表达式为:
xl=Hl([x0,x1,…,xl-1])
其中,Hl代表第l层的密集连接子块,xi为第i个密集连接子块提取的特征图,[x0,x1,…,xl-1]为前l-1层特征图集合;密集连接子块的输入均为前一个密集连接子块输出的全部特征图;
在密集连接中,密集连接子块输入为前一个子块卷积得到的特征图,根据最大化提取特征的原则,此层提取的特征图为此层独有,使得网络不会提取得到相同的特征图,最大化了网络模型的特征信息保留,实现了特征重用,提高特征利用率,并且以前一个密集连接子块输出的全部特征图作为本密集连接子块的输入,缓和梯度消失问题。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于东莞理工学院,未经东莞理工学院许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/202010719019.7/1.html,转载请声明来源钻瓜专利网。
- 上一篇:一种输电线路故障分类方法及装置
- 下一篇:一种声波谐振器及其制备方法





