[发明专利]β-Ga2 在审
| 申请号: | 202010434224.9 | 申请日: | 2012-11-12 |
| 公开(公告)号: | CN111534856A | 公开(公告)日: | 2020-08-14 |
| 发明(设计)人: | 兴公祥;松原春香;渡边信也 | 申请(专利权)人: | 株式会社田村制作所;株式会社光波 |
| 主分类号: | C30B29/16 | 分类号: | C30B29/16;C30B15/34 |
| 代理公司: | 北京市隆安律师事务所 11323 | 代理人: | 徐谦;刘宁军 |
| 地址: | 日本*** | 国省代码: | 暂无信息 |
| 权利要求书: | 查看更多 | 说明书: | 查看更多 |
| 摘要: | |||
| 搜索关键词: | ga base sub | ||
本发明提供一种能够有效地抑制双晶化的β‑Ga2O3系单晶基板。本发明的一个实施方式提供一种β‑Ga2O3系单晶基板,其中,主面上的与生长轴垂直的方向的每1cm的双晶的平均数小于30.7个。
本申请是分案申请,原案申请的申请号为201280055743.8,国际申请号为PCT/JP2012/079265,申请日为2012年11月12日,发明名称为“β-Ga2O3系单晶的生长方法”。
技术领域
本发明涉及β-Ga2O3系单晶的生长方法,特别涉及能够抑制双晶化的β-Ga2O3系单晶的生长方法。
背景技术
以往,已知通过布里奇曼法使与晶种大致相同大小的InP单晶生长的晶体生长方法(例如,参照非专利文献1)。根据非专利文献1所记载的方法,能够得到不含双晶的InP单晶。
现有技术文献
非专利文献
非专利文献1:F.Matsumoto,et al.Journal of Crystal Growth 132(1993)pp.348-350.
发明内容
但是,通过布里奇曼法使单晶生长时,晶体生长后需要将单晶与坩埚剥离,因此坩埚由与晶体的密合性高的材料构成时,难以取下生长的单晶。
例如,Ga2O3晶体的生长通常使用由Ir构成的坩埚,但Ir对β-Ga2O3系单晶的密合性高。因此,使用布里奇曼法使β-Ga2O3系单晶生长时,难以从坩埚取下单晶。
因此,本发明的目的是提供一种能够得到双晶化被抑制的β-Ga2O3系单晶的β-Ga2O3系单晶的生长方法。
本发明的一个方式为了达成上述目的,提供[1]~[4]的β-Ga2O3系单晶的生长方法。
[1]一种β-Ga2O3系单晶的生长方法,是使用EFG法的β-Ga2O3系单晶的生长方法,其中,包括使晶种与Ga2O3系熔液接触的工序,以及提拉上述晶种,且不进行缩颈工序地使β-Ga2O3系单晶生长的工序;在全部方向上述β-Ga2O3系单晶的宽度为上述晶种的宽度的110%以下。
[2]根据上述[1]所述的β-Ga2O3系单晶的生长方法,其中,在全部方向上述β-Ga2O3系单晶的宽度为上述晶种的宽度的100%以下。
[3]根据上述[2]所述的β-Ga2O3系单晶的生长方法,其中,在全部方向上述β-Ga2O3系单晶的宽度与上述晶种的宽度相等。
[4]根据上述[1]~[3]中任一项所述的β-Ga2O3系单晶的生长方法,其中,使上述β-Ga2O3系单晶向其b轴方向生长。
根据本发明,能够提供可有效地抑制双晶化的β-Ga2O3系单晶的生长方法。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于株式会社田村制作所;株式会社光波,未经株式会社田村制作所;株式会社光波许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/202010434224.9/2.html,转载请声明来源钻瓜专利网。
- 一种Nd<sub>2</sub>O<sub>3</sub>-Yb<sub>2</sub>O<sub>3</sub>改性的La<sub>2</sub>Zr<sub>2</sub>O<sub>7</sub>-(Zr<sub>0.92</sub>Y<sub>0.08</sub>)O<sub>1.96</sub>复相热障涂层材料
- 无铅[(Na<sub>0.57</sub>K<sub>0.43</sub>)<sub>0.94</sub>Li<sub>0.06</sub>][(Nb<sub>0.94</sub>Sb<sub>0.06</sub>)<sub>0.95</sub>Ta<sub>0.05</sub>]O<sub>3</sub>纳米管及其制备方法
- 磁性材料HN(C<sub>2</sub>H<sub>5</sub>)<sub>3</sub>·[Co<sub>4</sub>Na<sub>3</sub>(heb)<sub>6</sub>(N<sub>3</sub>)<sub>6</sub>]及合成方法
- 磁性材料[Co<sub>2</sub>Na<sub>2</sub>(hmb)<sub>4</sub>(N<sub>3</sub>)<sub>2</sub>(CH<sub>3</sub>CN)<sub>2</sub>]·(CH<sub>3</sub>CN)<sub>2</sub> 及合成方法
- 一种Bi<sub>0.90</sub>Er<sub>0.10</sub>Fe<sub>0.96</sub>Co<sub>0.02</sub>Mn<sub>0.02</sub>O<sub>3</sub>/Mn<sub>1-x</sub>Co<sub>x</sub>Fe<sub>2</sub>O<sub>4</sub> 复合膜及其制备方法
- Bi<sub>2</sub>O<sub>3</sub>-TeO<sub>2</sub>-SiO<sub>2</sub>-WO<sub>3</sub>系玻璃
- 荧光材料[Cu<sub>2</sub>Na<sub>2</sub>(mtyp)<sub>2</sub>(CH<sub>3</sub>COO)<sub>2</sub>(H<sub>2</sub>O)<sub>3</sub>]<sub>n</sub>及合成方法
- 一种(Y<sub>1</sub>-<sub>x</sub>Ln<sub>x</sub>)<sub>2</sub>(MoO<sub>4</sub>)<sub>3</sub>薄膜的直接制备方法
- 荧光材料(CH<sub>2</sub>NH<sub>3</sub>)<sub>2</sub>ZnI<sub>4</sub>
- Li<sub>1.2</sub>Ni<sub>0.13</sub>Co<sub>0.13</sub>Mn<sub>0.54</sub>O<sub>2</sub>/Al<sub>2</sub>O<sub>3</sub>复合材料的制备方法





