[发明专利]一种曲线相似度计算方法有效
| 申请号: | 202010155640.5 | 申请日: | 2020-03-09 |
| 公开(公告)号: | CN111382794B | 公开(公告)日: | 2023-04-25 |
| 发明(设计)人: | 金剑秋;宋超;章志勇 | 申请(专利权)人: | 浙江工商大学 |
| 主分类号: | G06V10/74 | 分类号: | G06V10/74;G06V10/75;G06V10/422;G06F17/16 |
| 代理公司: | 杭州奥创知识产权代理有限公司 33272 | 代理人: | 王佳健 |
| 地址: | 310018 浙江*** | 国省代码: | 浙江;33 |
| 权利要求书: | 查看更多 | 说明书: | 查看更多 |
| 摘要: | |||
| 搜索关键词: | 一种 曲线 相似 计算方法 | ||
本发明公开了一种曲线相似度计算方法。现有的二维曲线相似度计算方法在曲线放缩和重采样等变换下不够稳定。本发明首先分别计算两曲线的距离邻接矩阵和角度邻接矩阵,接着计算它们的特征值序列,以特征值序列为基础计算它们之间的加权距离,该距离越小,则两曲线越相似。本发明是一种无需校准的二维曲线相似度计算方法,该方法无惧全局放缩和旋转平移变换。
技术领域
本发明属于图像图形检索、机器视觉领域,给出了一种计算两条曲线的相似度计算方法,可用于二维轮廓或曲线的检索。
背景技术
曲线相似度计算是指通过一定的度量准则来计算两条曲线之间的相似程度或距离,这里的曲线可以是不封闭的,也可以是封闭的。它是计算机视觉和模式识别的基本问题,也是许多科学领域的基础性问题。
发明内容
本发明的目的在于提供一种两条曲线间相似程度的计算方法,该方法过程无需建立两条曲线间点对点的对应关系。
本发明采用旋转放缩变换不变的距离邻接矩阵和角度邻接矩阵作为特征,比较两曲线的相似性,具体是:
输入:两条二维曲线分别为A和B,它们均已均匀离散化,用相应的点序表示:A=(a1,a2,a3,…,an),B=(b1,b2,…,bm)。
输出:两条曲线之间的距离ρ(A,B)。该距离越小,表示两条曲线越相似。
具体步骤包括:
步骤(1)计算曲线A和曲线B的距离邻接矩阵,并做规范化处理得到DA、DB。
步骤(2)计算曲线A和曲线B的角度邻接矩阵ΩA、ΩB。
步骤(3)计算矩阵DA、DB、ΩA和ΩB的特征值序列,并规范化处理。
步骤(4)计算两曲线间的距离。
进一步说,步骤(1)中的距离邻接矩阵中第i行第j列元素计算如下:
dij=‖ki-kj‖2
其中k∈A或B。
步骤(1)中的规范化处理是指将距离邻接矩阵中的所有元素除以矩阵的中值。
进一步说,所述的角度邻接矩阵中第i行第j列元素为点ki和点kj连线与坐标轴X轴之间的夹角,取值范围为[0,π/2]。
进一步说,所述的特征值序列中的特征值按从小到大顺序排列。
进一步说,特征值序列规范化是将特征值序列中的每一项均与第一项作差值运算。
进一步说,两曲线间的距离计算公式如下:
其中wλ和wξ为加权系数,k=min(n,m),n为距离邻接矩阵的特征值个数,m为角度邻接矩阵特征值个数,为DA的特征值序列中的第i个特征值、为DB的特征值序列中的第i个特征值、为ΩA的特征值序列中的第i个特征值,为ΩB的特征值序列中的第i个特征值。
本发明的有益效果:本发明是一种无需校准的二维曲线相似度计算方法,该方法无惧全局放缩和旋转平移变换。
具体实施方式
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于浙江工商大学,未经浙江工商大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/202010155640.5/2.html,转载请声明来源钻瓜专利网。





