[发明专利]基于粒子群优化的支持向量机的氢燃料电池故障诊断方法在审
| 申请号: | 201910949115.8 | 申请日: | 2019-10-08 |
| 公开(公告)号: | CN110852017A | 公开(公告)日: | 2020-02-28 |
| 发明(设计)人: | 向德;李庆先;刘良江;周四清;张遥奇;熊婕;朱先宇;王晋威;吴珊珊 | 申请(专利权)人: | 湖南省计量检测研究院 |
| 主分类号: | G06F30/25 | 分类号: | G06F30/25;G06N3/00 |
| 代理公司: | 长沙智路知识产权代理事务所(普通合伙) 43244 | 代理人: | 张毅 |
| 地址: | 410000 湖*** | 国省代码: | 湖南;43 |
| 权利要求书: | 查看更多 | 说明书: | 查看更多 |
| 摘要: | |||
| 搜索关键词: | 基于 粒子 优化 支持 向量 燃料电池 故障诊断 方法 | ||
1.一种基于粒子群优化的支持向量机的氢燃料电池故障诊断方法,其特征在于,所述方法包括如下步骤:
步骤1:利用氢燃料电池内阻在线测试系统,获取氢燃料电池在正常、膜电极故障、汽水分离器故障、温控阀故障状态下的内阻变化信号,得到内阻数据样本集;
步骤2:计算内阻数据样本集中每个样本的若干个统计参数,构建初始特征集X=[x1,x2,…,x10]T,其中统计参数x1为最大值,x2为平均值,x3为方差,x4为均方根值,x5为方根幅值,x6为峭度,x7为峰-峰值,x8为波形指标,x9为裕度指标,x10为偏斜度;
步骤3:采用拉普拉斯分值方法对初始特征集X=[x1,x2,…,x10]T进行特征降维,将计算所得的每个特征对应的拉普拉斯分值按从小到大排列,选取排在最前的若干个特征组成故障特征矩阵;
步骤4:建立基于支持向量机的氢燃料电池故障诊断模型,并采用粒子群算法对所述故障诊断模型进行参数寻优,寻优参数包括所述故障诊断模型的核函数参数g和误差项的惩罚因子c;
步骤5:将所述故障特征矩阵分为训练样本和测试样本,采用训练样本对所述故障诊断模型进行训练;
步骤6:利用已训练的故障诊断模型对测试样本进行分类,根据分类结果识别氢燃料电池的工作状态和故障类型。
2.根据权利要求1所述的方法,其中,步骤3中采用拉普拉斯分值方法计算初始特征集中每一个特征的拉普拉斯分值具体包括如下步骤:
步骤3.1:构造一个具有m个样本点的近邻图Q,近邻图Q是描述样本之间关系的一类图;第i个节点对应xi,第j个节点对应xj,判断样本点i和样本点j是否连通;
步骤3.2:若样本点i和样本点j不连通,令Sij=0;否则,令
其中,i,j=1,2,…,m,σ为热核宽度,Sij是加权矩阵S的元素;
步骤3.3:对于初始特征集中的第r个特征,定义fr=[fr1,fr2,…,frm]T,D=SI,I=[1,…,1]T,L=D-S;其中D为对角阵,矩阵L为临近图Q的拉普拉斯矩阵,r=1,2,…,n;
步骤3.4:对各个特征进行去均值化处理,得到去均值化处理后的各fri的特征元素集合Fr,
步骤3.5:计算第r个特征的拉普拉斯分值Lr,构成故障诊断特征向量。
3.根据权利要求2所述的方法,其中,所述步骤3.1中判断样本点i与样本点j是否连通的标准为样本点i为样本点j的邻近节点。
4.根据权利要求3所述的方法,其中,所述步骤4中氢燃料电池故障诊断模型具体为基于“一对多”而建的SVM-多故障分类模型,其中SVM1区分正常和其他故障,SVM2区分膜电极故障和其他故障,SVM3区分汽水分离器故障和其他故障,SVM4区分温控阀故障和其他故障,四个SVM中核函数都采用径向基函数。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于湖南省计量检测研究院,未经湖南省计量检测研究院许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201910949115.8/1.html,转载请声明来源钻瓜专利网。





