[发明专利]基于计算机视觉成像的工业型材几何尺寸自动检测方法有效
| 申请号: | 201811539019.8 | 申请日: | 2018-12-17 |
| 公开(公告)号: | CN109658402B | 公开(公告)日: | 2023-04-18 |
| 发明(设计)人: | 张年崧;杨嵩毅;符顺;陈翔 | 申请(专利权)人: | 中山大学 |
| 主分类号: | G06T7/00 | 分类号: | G06T7/00 |
| 代理公司: | 广州市华学知识产权代理有限公司 44245 | 代理人: | 李盛洪 |
| 地址: | 510275 广东*** | 国省代码: | 广东;44 |
| 权利要求书: | 查看更多 | 说明书: | 查看更多 |
| 摘要: | |||
| 搜索关键词: | 基于 计算机 视觉 成像 工业 几何 尺寸 自动检测 方法 | ||
1.一种基于计算机视觉成像的工业型材几何尺寸自动检测方法,其特征在于,所述的工业型材几何尺寸自动检测方法包括以下步骤:
S1、从输入源获取图像,自动检测型材位置并提取感兴趣区域;
S2、对提取的图像感兴趣区域进行检测前预处理,改善图像动态范围并得到二值图;S3、分别提取内外轮廓,并做多边形拟合;所述的步骤S3的过程如下:
S31、使用Suzuki-Abe算法提取轮廓,跟踪二值图边界并对边界编号,构建各个轮廓的拓扑关系树,分析内外轮廓的相互包含关系,实现从二值图中提取轮廓;
S32、根据轮廓拓扑结构区分外部轮廓与内部轮廓并分别存储;
S33、使用Ramer–Douglas–Peucker算法进行多边形拟合,使用上一步提取出的轮廓点迭代选取适应点,将曲线近似表示为一系列适应点并减少点的数目,即对轮廓做多边形拟合,得到逆时针排序的多边形顶点;
S4、对于外轮廓,判断多边形顶点处于直线或曲线上,对于内轮廓,判断其为孔或槽;
S5、对于外轮廓,根据判断结果计算直线与曲线参数,对于内轮廓,计算孔的位置与半径,槽的位置、长宽与倾斜度;
S6、输出检测参数,并将检测结果标注于原图,展现给用户。
2.根据权利要求1所述的基于计算机视觉成像的工业型材几何尺寸自动检测方法,其特征在于,所述的步骤S1中检测型材位置的过程如下:
以中值滤波平滑图像,提取全部轮廓,对外部轮廓进行矩形拟合,提取面积最大矩形区域。
3.根据权利要求1所述的基于计算机视觉成像的工业型材几何尺寸自动检测方法,其特征在于,所述的步骤S2的过程如下:
以直方图拉伸的方法提高图像动态范围,使用中值滤波、高斯滤波去除噪声,采用大津法对图像进行二值化得到二值图。
4.根据权利要求1所述的基于计算机视觉成像的工业型材几何尺寸自动检测方法,其特征在于,所述的步骤S32中区分外部轮廓与内部轮廓的方法如下:
遍历步骤S31中生成的拓扑关系树,若某轮廓无父轮廓,则为外轮廓;若某轮廓有父轮廓,则为内轮廓。
5.根据权利要求1所述的基于计算机视觉成像的工业型材几何尺寸自动检测方法,其特征在于,所述的步骤S4的过程如下:
对于外轮廓,遍历步骤S3中多边形拟合得到的顶点,每次按顺序向后取t个点使用最小二乘法计算圆方程得到残差,与经验得到的阈值比较判断该顶点处于轮廓直线或曲线上;
对于内轮廓,使用步骤S3中多边形拟合得到的全部顶点做最小二乘法计算圆的方程,并由残差判断内部轮廓为圆孔或槽。
6.根据权利要求1所述的基于计算机视觉成像的工业型材几何尺寸自动检测方法,其特征在于,所述的步骤S5的过程如下:
根据步骤S4中多边形顶点判断结果计算出直线和曲线的参数,若相邻两顶点属于直线顶点,则使用两顶点作为线段端点计算出直线的长度与坐标,若连续几个顶点位于原轮廓曲线上,则使用最小二乘法计算曲线相切圆的半径和圆心坐标,将检测到的直线和曲线标注在原图外轮廓上;
根据步骤S4中内轮廓类型判断结果计算出孔和槽的参数,对于判定为圆孔的内轮廓,使用多边形拟合得到的顶点通过最小二乘法计算孔的圆心坐标与半径;对于判定为槽的内轮廓通过寻找最小面积旋转矩形算法得到完全包围槽外轮廓且面积最小的旋转矩形,进而计算槽的坐标、长宽与旋转角度;然后将检测到的圆孔和槽标注在原图上。
7.根据权利要求1所述的基于计算机视觉成像的工业型材几何尺寸自动检测方法,其特征在于,所述的步骤S6的过程如下:
使用像素与实际距离的比值将检测到长度参数转化为毫米输出,并且在原图中对检测到的顶点、直线、曲线、与曲线相切的圆、内部孔、槽进行标注。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于中山大学,未经中山大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201811539019.8/1.html,转载请声明来源钻瓜专利网。





