[发明专利]一种基于非负张量分解的多源信号分离方法有效
| 申请号: | 201811246892.8 | 申请日: | 2018-10-24 |
| 公开(公告)号: | CN109214469B | 公开(公告)日: | 2020-06-26 |
| 发明(设计)人: | 刘弹;李光;梁霖;刘飞;王宝;栗茂林 | 申请(专利权)人: | 西安交通大学 |
| 主分类号: | G06K9/62 | 分类号: | G06K9/62;G01H17/00 |
| 代理公司: | 西安智大知识产权代理事务所 61215 | 代理人: | 贺建斌 |
| 地址: | 710049 陕*** | 国省代码: | 陕西;61 |
| 权利要求书: | 查看更多 | 说明书: | 查看更多 |
| 摘要: | |||
| 搜索关键词: | 一种 基于 张量 分解 信号 分离 方法 | ||
一种基于非负张量分解的多源信号分离方法,针对多源振动信号数据,基于平均信息熵方法确定最优的窗长,进而在最优窗长的基础上采取短时傅里叶变换构建出三维时频张量分布,并利用迭代步数、收敛误差和核一致性指标选择最优源信号个数,根据最优源信号个数进行非负张量分解,利用分解得到的矩阵重构出源信号的时频矩阵分布,进而通过短时傅里叶逆变换获得源信号。本发明能够准确地从混合信号中提取出源信号。
技术领域
本发明属于设备检测与故障诊断技术领域,具体涉及一种基于非负张量分解的多源信号分离方法。
背景技术
随着机械设备复杂程度的不断提高,采集的振动信号往往是多种振动激励源分量的混合,并且在噪声的干扰下,很难辨识故障部件的特征分量,从而影响故障的识别。因此,如何从振动信号中分离出主要特征分量,是故障诊断中急需解决的问题之一。作为现代信号处理领域的一个新方向,信号的源分离技术在源信号个数、位置及传输通道未知的情况下,从获得的混合信号中分离出源信号,其中独立分量分析(Independent ComponentAnalysis)作为常用的源分离技术,主要是利用信号的高阶统计特性进行分析,最终分解出的各个信号是相互独立的,但独立分量分析技术需要信号具有非高斯分布、无噪声等先验知识,因此应用范围有限。理论研究表明,非负张量分解技术作为一种高维信号处理方法,目前广泛应用在生物医学、音频分离、图像和文本处理等领域,在进行信号分解时,无需先验知识,因此,在合适的时频变换和张量分解技术下,可有效分离出源信号。
现有的非负张量主要是二维时频数据并联合通道的方式构建,而时频变换中的窗长则根据经验选择,无法适应不同振动信号特征,并且在非负张量分解过程中的源信号个数也依靠经验给出,导致不能充分表征源信号的振动特征,降低了源信号的分解效果。
发明内容
为了克服上述现有技术的缺点,本发明的目的是提供了一种基于非负张量分解的多源信号分离方法,通过最优窗长和最优源信号个数的自适应选择,在非负张量分解下,能够准确分离出源信号。
为了达到上述目的,本发明采取的技术方案为:
一种基于非负张量分解的多源信号分离方法,包括以下步骤:
步骤一:提取多源振动信号Am×n,其中m为每个源信号数据点个数,n为信号个数;
步骤二:对于多源振动信号Am×n,选择不同窗长下的汉宁窗对Am×n进行短时傅里叶变换构建时频数据,得到不同窗长下的时频数据Bm×m×n,根据时频数据Bm×m×n求解时域方向和频域方向的平均信息熵,绘制不同窗长下的平均信息熵图形,选择时域方向和频域方向的平均信息熵的交点所对应的窗长作为最优窗长;
步骤三:根据最优窗长,对多源振动信号Am×n进行短时傅里叶变换得到时频张量数据Xt×f×n,其中t、f、n分别代表时间、频率和信号个数;
步骤四:对时频张量数据Xt×f×n进行非负张量分解,根据分解过程中的收敛误差、迭代步数和核一致性,采用基于收敛误差及迭代步数的评价方法和基于核一致性的源信号个数的优化估计方法,其中基于收敛误差及迭代步数的评价方法是通过非负张量分解过程中算法的迭代步数和相邻层之间的相对误差来衡量的,而基于核一致性的源信号个数的优化估计方法通过将非负张量分解和同等规格的非负Tucker分解的内核数据结构间的相互关系进行评估,核一致性指标用公式表示为:
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于西安交通大学,未经西安交通大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201811246892.8/2.html,转载请声明来源钻瓜专利网。





