[发明专利]基于轴不变量的多轴机器人正运动学计算方法有效
| 申请号: | 201810933676.4 | 申请日: | 2018-08-16 |
| 公开(公告)号: | CN108942943B | 公开(公告)日: | 2020-03-17 |
| 发明(设计)人: | 居鹤华 | 申请(专利权)人: | 居鹤华 |
| 主分类号: | B25J9/16 | 分类号: | B25J9/16 |
| 代理公司: | 江苏法德东恒律师事务所 32305 | 代理人: | 刘林 |
| 地址: | 211100 江苏省南京市*** | 国省代码: | 江苏;32 |
| 权利要求书: | 查看更多 | 说明书: | 查看更多 |
| 摘要: | |||
| 搜索关键词: | 基于 不变量 机器人 运动学 计算方法 | ||
1.一种基于轴不变量的多轴机器人正运动学计算方法,其特征是,
多轴机器人装置包含杆件序列与关节序列,将树链中的关节序列转换成对应的轴序列及其父轴序列,所述轴序列的轴为平动轴或转动轴;
使用轴集合来对应描述多轴机器装置,以自然坐标系为基础,利用轴集合的轴对应的轴不变量来计算多轴机器装置的控制参数;
利用轴不变量的不变性建立基于轴不变量的迭代式运动学方程,并且所述迭代式运动学方程的符号对应到伪代码,反映所述多轴机器人运动链的拓扑关系与链序关系;
计算运动链的迭代式正运动学数值;
计算基于轴不变量的迭代式偏速度。
2.根据权利要求1所述的基于轴不变量的多轴机器人正运动学计算方法,其特征是,
惯性空间记为i,给定由i至杆件n的运动链iln,杆件l,n,j均∈A,n>l,s是杆件l上的任一点,A为轴序列;当转动矢量有测量噪声时,运动链iln的迭代式正运动学数值计算步骤包括:
【1】链节正运动学计算步骤;
运动副对应的运动链通过区间符表示为:
其中:是l的前继即父,l是的后继即子;为链节,是运动链中的一个基本环节;
【2】运动链iln的位形计算步骤;
【3】运动链iln的速度及加速度计算步骤。
3.根据权利要求2所述的基于轴不变量的多轴机器人正运动学计算方法,其特征是,
链节正运动学计算步骤为:
【1-1】已知转动矢量根据欧拉四元数公式计算欧拉四元数
【1-2】由欧拉四元数计算旋转变换阵
【1-3】由下式计算链节速度:
式中,运动副表示连接杆件及杆件l的运动副;转动副R,棱柱副P;沿轴的线位置绕轴的角位置轴矢量角速度线速度表达形式投影符|□表示矢量对参考基的投影矢量,参考基为惯性空间i;为i到的旋转变换矩阵,为转动速度对参考基i的投影矢量;为平动速度对参考基i的投影矢量;
【1-4】由下式计算链节加速度:
式中,转动加速度平动加速度表示角速度的导数即角加速度,表示线速度的导数即线加速度。
4.根据权利要求2所述的基于轴不变量的多轴机器人正运动学计算方法,其特征是,
运动链iln的位形计算步骤为:
【2-1】由欧拉四元数的链关系,将四元数乘法运算用其共轭矩阵运算替代,计算欧拉四元数序列为欧拉四元数;
【2-2】用欧拉四元数表示定轴转动;旋转变换阵的计算等价于链式四元数的矩阵计算,计算旋转变换阵序列{iQj|j∈A},iQj为i到j的旋转变换矩阵;
【2-3】由下式计算位置矢量
式中,轴矢量沿轴的线位置的含义是坐标矢量对参考基i的投影矢量,为在自然坐标系下由杆件到杆件l的坐标矢量;nS表示杆件n中的点S,为由i至nS的运动链;表达形式投影符|□表示矢量对参考基的投影矢量,参考基为惯性空间i;为零位时的平动矢量对参考基i的投影矢量,为轴矢量对参考基i的投影矢量。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于居鹤华,未经居鹤华许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201810933676.4/1.html,转载请声明来源钻瓜专利网。





