[发明专利]一种日心悬浮轨道上电动帆航天器编队飞行协同控制方法在审
| 申请号: | 201810814598.6 | 申请日: | 2018-07-23 |
| 公开(公告)号: | CN109213190A | 公开(公告)日: | 2019-01-15 |
| 发明(设计)人: | 袁建平;王伟;袁静;张军华;李琪;高琛 | 申请(专利权)人: | 西北工业大学 |
| 主分类号: | G05D1/10 | 分类号: | G05D1/10 |
| 代理公司: | 西安通大专利代理有限责任公司 61200 | 代理人: | 徐文权 |
| 地址: | 710072 陕西*** | 国省代码: | 陕西;61 |
| 权利要求书: | 查看更多 | 说明书: | 查看更多 |
| 摘要: | |||
| 搜索关键词: | 航天器 编队飞行 悬浮轨道 协同控制 分布式协同控制 系统鲁棒性 单点故障 机动过程 控制方式 冗余状态 通信交互 信息感知 自身状态 主从式 引入 更新 群体 | ||
1.一种日心悬浮轨道上电动帆航天器编队飞行协同控制方法,其特征在于,包括以下步骤:
步骤一,根据电动帆推力矢量模型,分析在日心悬浮轨道上单个电动帆的性能;
步骤二,对于太阳系内的多个行星,分别探讨在电动帆最大推力角限制下所允许的悬浮轨道参数;
步骤三,若悬浮轨道与行星同步,电动帆的推力角和特征加速度则通过解析给出。
2.根据权利要求1所述的一种日心悬浮轨道上电动帆航天器编队飞行协同控制方法,其特征在于,所述步骤一中,日心悬浮轨道上电动帆航天器性能分析的具体方法如下:
电动帆的推力加速度表示为
其中,为特征加速度,为日地距离,r为太阳-电动帆距离,代表太阳-电动帆单位矢量,为帆面法向单位矢量,为锥角,α为推力角,k为无量纲推力加速度系数,推力矢量模型表明,推力角α和系数k均为锥角αn的6次方程:
其中,系数b0,...,b6,c0,...,c6通过实验数据插值拟合得到;
在旋转坐标系下建立一般椭圆悬浮轨道上电动帆航天器的动力学方程:
其中,R为悬浮轨道焦点-电动帆的距离,μ⊙为太阳引力常数,为瞬时角速度,为了实现对行星的连续观测,假定悬浮轨道上电动帆具有和所观测行星相同的角速度,如果行星长半轴为aP,悬浮轨道高度为H,由式(4)-(6)可得推力角α和特征加速度满足:
由式(8)可知,电动帆的特征加速度在γ=γmax(f=0)时取得最大值,即在近拱点对性能要求最苛刻,结合式公式(2)和公式(3)。
3.根据权利要求1所述的一种日心悬浮轨道上电动帆航天器编队飞行协同控制方法,其特征在于,所述步骤二中,电动帆最大推力角限制下所允许的悬浮轨道参数的具体方法如下:
假定主电动帆运行在椭圆悬浮轨道上,从电动帆在其周围编队飞行,令代表第i个从电动帆相对于主电动帆的位置,主电动帆为下标C,则在主帆旋转坐标系下,相对运动动力学方程为
其中,wC为主电动帆的角速度,由于主从电动帆距离较近,因此可将从电动帆相关项在主电动帆附近进行线性化处理,式(9)最终整理为
式中,Mv、Mp和Mc为与速度项、位置项和控制输入有关的系数矩阵,令为控制输入,第i个从电动帆与主电动帆相关变量的差值,其中,和θ代表推力方向角;
假定编队系统中含有N个电动帆,为了实现对目标相对构型的追踪,并保证机动过程中的一致性,基于式(10)设计如下控制律:
其中,为从电动帆的相对位置和相对速度误差,wij为邻接矩阵的第i行j列元素,将式(11)代入式(10),得到误差方程
其中,
式中,为通信拓扑的拉格朗日矩阵,令li代表矩阵的第i个特征值,hi代表矩阵Γ的特征值,则有
式(12)代表的线性系统渐近稳定的充要条件为矩阵Γ的每个特征值都具有负实部,即参数ζ需要满足:
。
该专利技术资料仅供研究查看技术是否侵权等信息,商用须获得专利权人授权。该专利全部权利属于西北工业大学,未经西北工业大学许可,擅自商用是侵权行为。如果您想购买此专利、获得商业授权和技术合作,请联系【客服】
本文链接:http://www.vipzhuanli.com/pat/books/201810814598.6/1.html,转载请声明来源钻瓜专利网。





